Cytoskeleton (Hoboken)
September 2024
Cancer cells depend on actin cytoskeleton reorganization to achieve hallmark malignant functions including abnormal activation, proliferation, migration and invasiveness. (Neural)-Wiskott-Aldrich Syndrome protein ((N-)WASP) binds actin and forms a complex with the WASP-interacting protein (WIP), which plays a critical role in regulating the actin cytoskeleton, through (N)-WASP-dependent and independent functions. Mutations in the WIP gene (WIPF1) lead to severe early onset immunodeficiency in humans and severe autoimmunity and shortened lifespan in mice.
View Article and Find Full Text PDFIn September 2023 members of the cell adhesion and cell migration research community came together to share their latest research and consider how our work might be translated for clinical practice. Alongside invited speakers, selected speakers and poster presentations, the meeting also included a round table discussion of how we might overcome the challenges associated with research translation. This meeting report seeks to highlight the key outcomes of that discussion and spark interest in the cell adhesions and cell migration research community to cross the perceived valley of death and translate our work into therapeutic benefit.
View Article and Find Full Text PDFYAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif) are transcription co-regulators that make up the terminal components of the Hippo signaling pathway, which plays a role in organ size control and derived tissue homeostasis through regulation of the proliferation, differentiation and apoptosis of a wide variety of differentiated and stem cells. Hippo/YAP signaling contributes to normal development of the nervous system, as it participates in self-renewal of neural stem cells, proliferation of neural progenitor cells and differentiation, activation and myelination of glial cells. Not surprisingly, alterations in this pathway underlie the development of severe neurological diseases.
View Article and Find Full Text PDFDue to their high metabolic rate, tumor cells produce exacerbated levels of reactive oxygen species that need to be under control. Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) is a scaffold protein with multiple yet poorly understood functions that participates in tumor progression and promotes cancer cell survival. However, its participation in the control of oxidative stress has not been addressed yet.
View Article and Find Full Text PDFIn T lymphocytes, the Wiskott-Aldrich Syndrome protein (WASP) and WASP-interacting-protein (WIP) regulate T cell antigen receptor (TCR) signaling, but their role in lymphoma is largely unknown. Here we show that the expression of WASP and WIP is frequently low or absent in anaplastic large cell lymphoma (ALCL) compared to other T cell lymphomas. In anaplastic lymphoma kinase-positive (ALK+) ALCL, WASP and WIP expression is regulated by ALK oncogenic activity via its downstream mediators STAT3 and C/EBP-β.
View Article and Find Full Text PDFWild-type p53 (wtp53) is described as a tumour suppressor gene, and mutations in p53 occur in many human cancers. Indeed, in high-grade malignant glioma, numerous molecular genetics studies have established central roles of RTK-PI3K-PTEN and ARF-MDM2-p53 INK4a-RB pathways in promoting oncogenic capacity. Deregulation of these signalling pathways, among others, drives changes in the glial/stem cell state and environment that permit autonomous growth.
View Article and Find Full Text PDFThe cancer stem cell (CSC) hypothesis suggests that tumours are maintained by a subpopulation of cells with stem cell properties. Although the existence of CSCs was initially described in human leukaemia, less evidence exists for CSCs in solid tumours. Recently, a CD133+ cell subpopulation was isolated from human brain tumoursexhibiting stem cell properties in vitro as well as the capacity to initiate tumours in vivo.
View Article and Find Full Text PDFThrough actin-binding proteins such as the neural Wiskott-Aldrich syndrome protein (N-WASP) and WASP-interacting protein (WIP), the Rho family GTPases RhoA, Rac1 and Cdc42 are major modulators of the cytoskeleton. (N-)WASP and WIP control Rho GTPase activity in various cell types, either by direct WIP/(N-)WASP/Cdc42 or potential WIP/RhoA binding, or through secondary links that regulate GTPase distribution and/or transcription levels. WIP helps to regulate filopodium generation and participates in the Rac1-mediated ruffle formation that determines cell motility.
View Article and Find Full Text PDFIn cancer, the deregulation of growth signaling pathways drives changes in the cell's architecture and its environment that allow autonomous growth of tumors. These cells then acquire a tumor-initiating "stemness" phenotype responsible for disease advancement to more aggressive stages. Here, we show that high levels of the actin cytoskeleton-associated protein WIP (WASP-interacting protein) correlates with tumor growth, both of which are linked to the tumor-initiating cell phenotype.
View Article and Find Full Text PDFCancer cells form actin-rich degradative protrusions (invasive pseudopods and invadopodia), which allows their efficient dispersal during metastasis. Using biochemical and advanced imaging approaches, we demonstrate that the N-WASP-interactors WIP and WICH/WIRE play non-redundant roles in cancer cell invasion. WIP interacts with N-WASP and cortactin and is essential for invadopodium assembly, whereas WICH/WIRE regulates N-WASP activation to control invadopodium maturation and degradative activity.
View Article and Find Full Text PDFIntroduction: Neuronal morphogenesis is governed mainly by two interconnected processes, cytoskeletal reorganization, and signal transduction. The actin-binding molecule WIP (Wiskott-Aldrich syndrome protein [WASP]-interacting protein) was identified as a negative regulator of neuritogenesis. Although WIP controls activity of the actin-nucleation-promoting factor neural WASP (N-WASP) during neuritic differentiation, its implication in signal transduction remains unknown.
View Article and Find Full Text PDFPodosomes are integrin-containing adhesion structures commonly found in migrating leukocytes of the monocytic lineage. The actin cytoskeletal organisation of podosomes is based on a WASP- and Arp2/3-mediated mechanism. WASP also associates with a second protein, WIP (also known as WIPF1), and they co-localise in podosome cores.
View Article and Find Full Text PDFMany solid tumors contain a subpopulation of cells with stem characteristics and these are known as cancer stem cells (CSCs) or tumor-initiating cells (TICs). These cells drive tumor growth and appear to be regulated by molecular pathway different from other cells in the tumor bulk. Here, we set out to determine whether elements of the PI3K-AKT pathway are necessary to maintain the CSC-like phenotype in breast tumor cells and for these cells to survive, bearing in mind that the identification of such elements is likely to be relevant to define future therapeutic targets.
View Article and Find Full Text PDFThe acquisition of invasiveness is characteristic of tumor progression. Numerous genetic changes are associated with metastasis, but the mechanism by which a cell becomes invasive remains unclear. Expression of p85β, a regulatory subunit of phosphoinositide-3-kinase, markedly increases in advanced carcinoma, but its mode of action is unknown.
View Article and Find Full Text PDFActin filament assembly and reorganisation during cell migration and invasion into extracellular matrices is a well-documented phenomenon. Among actin-binding proteins regulating its polymerisation, the members of the WASP (Wiskott Aldrich Syndrome Protein) family are generally thought to play the most significant role in supporting cell invasiveness. In situ, cytosolic N-WASP (neural WASP) is associated with a partner protein termed WIP (WASP Interacting Protein) that is bound to the N-terminal domain of N-WASP.
View Article and Find Full Text PDFThe actin cytoskeleton is essential for cell adhesion and migration, functions important for tumor invasion. In addition to binding N-WASP/WASP, WIP binds and stabilizes F-actin. WIP(-/-) fibroblasts were used to test the role of WIP in F-actin function.
View Article and Find Full Text PDFWe identify Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) as a novel component of neuronal synapses whose absence increases dendritic spine size and filamentous actin levels in an N-WASP/Arp2/3-independent, RhoA/ROCK/profilinIIa-dependent manner. These effects depend on the reduction of membrane sphingomyelin (SM) due to transcriptional upregulation of neutral sphingomyelinase (NSM) through active RhoA; this enhances RhoA binding to the membrane, raft partitioning and activation in steady state but prevents RhoA changes in response to stimulus. Inhibition of NSM or SM addition reverses RhoA, filamentous actin and functional anomalies in synapses lacking WIP.
View Article and Find Full Text PDFPodosomes are integrin-based adhesions fundamental for stabilisation of the leading lamellae in migrating dendritic cells (DCs) and for extracellular matrix (ECM) degradation. We have previously shown that soluble factors and chemokines such as SDF 1-a trigger podosome initiation whereas integrin ligands promote podosome maturation and stability in DCs. The exact intracellular signalling pathways that regulate the sequential organisation of podosomal components in response to extracellular cues remain largely undetermined.
View Article and Find Full Text PDFThe spatial distribution of signals downstream from receptor tyrosine kinases (RTKs) or G-protein coupled receptors (GPCR) regulates fundamental cellular processes that control cell migration and growth. Both pathways rely significantly on actin cytoskeleton reorganization mediated by nucleation-promoting factors such as the WASP-(Wiskott-Aldrich Syndrome Protein) family. WIP (WASP Interacting Protein) is essential for the formation of a class of polarised actin microdomain, namely dorsal ruffles, downstream of the RTK for PDGF (platelet-derived growth factor) but the underlying mechanism is poorly understood.
View Article and Find Full Text PDFMetastasizing tumor cells use matrix metalloproteases, such as the transmembrane collagenase MT1-MMP, together with actin-based protrusions, to break through extracellular matrix barriers and migrate in dense matrix. Here we show that the actin nucleation-promoting protein N-WASP (Neural Wiskott-Aldrich syndrome protein) is up-regulated in breast cancer, and has a pivotal role in mediating the assembly of elongated pseudopodia that are instrumental in matrix degradation. Although a role for N-WASP in invadopodia was known, we now show how N-WASP regulates invasive protrusion in 3D matrices.
View Article and Find Full Text PDFThe human pathogens enteropathogenic Escherichia coli (EPEC) and vaccinia virus trigger actin assembly in host cells by activating the host adaptor Nck and the actin nucleation promoter neural Wiskott-Aldrich syndrome protein (N-WASP). EPEC translocates effector molecules into host cells via type III secretion, and the interaction between the translocated intimin receptor (Tir) and the bacterial membrane protein intimin stimulates Nck and N-WASP recruitment, leading to the formation of actin pedestals beneath adherent bacteria. Vaccinia virus also recruits Nck and N-WASP to generate actin tails that promote cell-to-cell spread of the virus.
View Article and Find Full Text PDFRegulated cell invasion resulting from migratory and matrix-degrading events is an essential step in physiological processes such as the inflammatory response and tissue repair. Cell invasion is also thought to be a critical parameter in pathological conditions such as cancer metastasis. The migration of normal and cancer cells is largely driven by the actin cytoskeleton, which controls cell shape, adhesion and contractility.
View Article and Find Full Text PDF