Intestinal inflammation is accompanied by excessive production of reactive oxygen and nitrogen metabolites. In order to counteract their harmful effects, the intestinal mucosa contains an extensive system of antioxidants. It has previously been shown that the levels of and the balance between the most important antioxidants are seriously impaired within the intestinal mucosa from inflammatory bowel disease (IBD) patients compared with normal mucosa.
View Article and Find Full Text PDFIntestinal mucosal damage in the inflammatory bowel diseases (IBD) Crohn's disease (CD) and ulcerative colitis (UC) involves reactive oxygen metabolites (ROMs). ROMs are neutralized by endogenous antioxidant enzymes in a carefully balanced two-step pathway. Superoxide dismutases (SODs) convert superoxide anion to hydrogen peroxide (H(2)O(2)), which is subsequently neutralized to water by catalase (CAT) or glutathione peroxidase (GPO).
View Article and Find Full Text PDFMucosal tissue damage and dysfunction in chronic inflammatory bowel disease (IBD) are partly caused by an enduring exposure to excessive amounts of reactive oxygen metabolites (ROMs). Although the three human isoforms of superoxide dismutase (SOD), copper/zinc (Cu/Zn)-SOD, manganese (Mn)-SOD, and extracellular (EC)-SOD, form the primary endogenous defence against ROMs, their expression levels and cellular localization in IBD mucosa are largely unknown. The present study used enzyme-linked immunosorbent assays (ELISAs), spectrophotometric activity assays, and immunohistochemistry to evaluate the protein concentration, enzymatic activity, and distribution of Cu/Zn-, Mn-, and EC-SOD in paired inflamed and non-inflamed mucosal resection specimens of patients with Crohn's disease (CD) or ulcerative colitis (UC) and compared these with the levels obtained in normal control mucosa.
View Article and Find Full Text PDFMucosal tissue damage in chronic inflammatory bowel disease (IBD) is partly caused by an enduring exposure to excessive amounts of reactive oxygen metabolites (ROM). To protect themselves from the toxic effects of ROM, most intestinal cell types constitutively express the highly specific, key ROM-neutralizing cytosolic enzyme Cu/Zn-superoxide dismutase (SOD). Under inflammatory conditions, however, its protein and activity levels have consistently been reported as being decreased.
View Article and Find Full Text PDF