Cytokine receptor-like factor 2 B-cell acute lymphoblastic leukemia (CRLF2 B-ALL) is a high-risk subtype characterized by CRLF2 overexpression with poor survival rates in children and adults. CRLF2 and interleukin-7 receptor alpha (IL-7Rα) form a receptor for the cytokine thymic stromal lymphopoietin (TSLP), which induces JAK/STAT and PI3K/AKT/mTOR pathway signals. Previous studies from our group showed that low TSLP doses increased STAT5, AKT, and S6 phosphorylation and contributed to CRLF2 B-ALL cell survival.
View Article and Find Full Text PDFPatient-derived xenograft (PDX) mice are produced by transplanting human cells into immune deficient mice. These models are an important tool for studying the mechanisms of normal and malignant hematopoiesis and are the gold standard for identifying effective chemotherapies for many malignancies. PDX models are possible because many of the mouse cytokines also act on human cells.
View Article and Find Full Text PDFThymic stromal lymphopoietin (TSLP) and IL-7 are cytokines that signal via the IL-7 receptor alpha (IL-7Rα) to exert both overlapping and unique functions during early stages of mouse B-cell development. In human B lymphopoiesis, the requirement for IL-7Rα signaling is controversial and the roles of IL-7 and TSLP are less clear. Here, we evaluated human B-cell production using novel in vitro and xenograft models of human B-cell development that provide selective IL-7 and human TSLP (hTSLP) stimulation.
View Article and Find Full Text PDFThymic stromal lymphopoietin (TSLP) stimulates in-vitro proliferation of human fetal B-cell precursors. However, its in-vivo role during normal human B lymphopoiesis is unknown. Genetic alterations that cause overexpression of its receptor component, cytokine receptor-like factor 2 (CRLF2), lead to high-risk B-cell acute lymphoblastic leukemia implicating this signaling pathway in leukemogenesis.
View Article and Find Full Text PDFHematopoietic stem and progenitors cells (HSPCs) are activated through TLR4 in vitro. However, it remains unclear whether in vivo TLR4 sensing by HSPCs occurs directly or via other cell intermediates. In this study, we examined the cellular mechanisms underlying murine hematopoietic stem cell (HSC) expansion and common lymphoid progenitor (CLP) depletion in a model of chronic low-dose LPS.
View Article and Find Full Text PDFIdentifying cross-species similarities and differences in immune development and function is critical for maximizing the translational potential of animal models. Coexpression of CD21 and CD24 distinguishes transitional and mature B cell subsets in mice. In this study, we validate these markers for identifying analogous subsets in humans and use them to compare the nonmemory B cell pools in mice and humans, across tissues, and during fetal/neonatal and adult life.
View Article and Find Full Text PDFAntigen presenting cells, specifically dendritic cells (DCs) are a focal point in the delicate balance between T cell tolerance and immune responses contributing to the onset of type I diabetes (T1D). Weak adjuvant proteins like the cholera toxin B subunit when linked to autoantigens may sufficiently alter the balance of this initial immune response to suppress the development of autoimmunity. To assess adjuvant enhancement of autoantigen mediated immune suppression of Type 1 diabetes, we examined the cholera toxin B subunit (CTB)-proinsulin fusion protein (CTB-INS) activation of immature dendritic cells (iDC) at the earliest detectable stage of the human immune response.
View Article and Find Full Text PDFIL-7 is critical for B cell production in adult mice; however, its role in human B lymphopoiesis is controversial. One challenge was the inability to differentiate human cord blood (CB) or adult bone marrow (BM) hematopoietic stem cells (HSCs) without murine stroma. Here, we examine the role of IL-7 in human B cell development using a novel, human-only model based on coculturing human HSCs on primary human BM stroma.
View Article and Find Full Text PDF