Few-layered molybdenum disulfide (MoS) nanosheets are poised to be at the core of low-voltage electronic device development. Upon environmental release, these two-dimensional (2D) structures can interact with abundant natural geocolloids. This study probes the role of dimensionality in modulating the aggregation behavior of 2D MoS nanosheets with plate-like geocolloids (i.
View Article and Find Full Text PDFGrowing use of carbon nanotubes (CNTs) have garnered concerns regarding their association with adverse health effects. Few studies have probed how CNTs affect a host's susceptibility to pathogens, particularly respiratory viruses. We reported that exposure of lung cells and mice to pristine single-walled CNTs (SWCNTs) leads to significantly increased influenza virus H1N1 strain A/Mexico/4108/2009 (IAV) titers in concert with repressed antiviral immune responses.
View Article and Find Full Text PDFThe increasing prevalence of carbon nanotubes (CNTs) as components of new functional materials has the unintended consequence of causing increases in CNT concentrations in aqueous environments. Aqueous systems are reservoirs for bacteria, including human and animal pathogens, that can form biofilms. At high concentrations, CNTs have been shown to display biocidal effects; however, at low concentrations, the interaction between CNTs and bacteria is more complicated, and antimicrobial action is highly dependent upon the properties of the CNTs in suspension.
View Article and Find Full Text PDFExposure of lung cells or mice to single-walled carbon nanotubes (SWCNTs) directly to the respiratory tract leads to a reduced host anti-viral immune response to infection with influenza A virus H1N1 (IAV), resulting in significant increases in viral titers. This suggests that unintended exposure to nanotubes via inhalation may increase susceptibility to notorious respiratory viruses that carry a high social and economic burden globally. However, the molecular mechanisms that contribute to viral susceptibility have not been elucidated.
View Article and Find Full Text PDFFate and transport of carbon nanomaterials can be strongly dependent on the interaction with secondary particulates in the aquatic systems. Bio-particulates in water, e.g.
View Article and Find Full Text PDFMultiwalled carbon nanotube-titanium dioxide (MWNT-TiO) nanohybrids (NHs), a promising support for electrocatalysts, have a high likelihood of environmental release. Aggregation of these NHs may or may not be captured by the sum of their component behavior, thus necessitating a systematic evaluation. This study probes the "part-whole question" by systematically evaluating the role of TiO loading (C:Ti molar ratios of 1:0.
View Article and Find Full Text PDFCarbon nanotubes are hybridized with metal crystals to impart multifunctionality into the nanohybrids (NHs). Simple but effective synthesis techniques are desired to form both zero-valent and oxides of different metal species on carbon nanotube surfaces. Sol-gel technique brings in significant advantages and is a viable technique for such synthesis.
View Article and Find Full Text PDFThe aggregation kinetics of nC60 and higher-order fullerene (HOF) clusters, i.e., nC70, nC76, and nC84, was systematically studied under a wide range of mono- (NaCl) and divalent (CaCl2) electrolytes and using time-resolved dynamic light scattering.
View Article and Find Full Text PDF