Publications by authors named "Indu Bajpai"

Ca-P and silicon based materials have become very popular as bone tissue engineering materials. In this study, water-glass (also known as sodium silicate glass) was coated on sintered hydroxyapatite (HA) and HA-TCP (TCP stands for tricalcium phosphate) samples and subsequently heat-treated at 600°C for 2 hrs. X-rays diffraction showed the presence of β- and α-TCP phases along with HA in the HA-TCP samples.

View Article and Find Full Text PDF

Calcium phosphates (Ca-P) are used commonly as artificial bone substitutes to control the biodegradation rate of an implant in the body fluid. This study examined the in vitro proliferation of human bone marrow-derived mesenchymal stem cells (hBMSCs) on triphasic Ca-P samples. For this aspect, hydroxyapatite (HA), dicalcium phosphate dehydrate (DCPD), and calcium hydroxide (Ca(OH) ) were mixed at various ratios, cold compacted, and sintered at 1250°C in air.

View Article and Find Full Text PDF

Background: Ti and its alloys have been widely used as orthopedic and dental implants due to their outstanding mechanical properties and biocompatibility. However, long time is required to form bond between Ti implant and surrounding tissues. Therefore, these implants necessitate surface treatment such as mechanical/chemical treatment and coating of bioactive materials for improving the osseointegration.

View Article and Find Full Text PDF

In addressing the issue of prosthetic infection, we demonstrate herein how direct electric field (DC EF) stimulation can effectively inhibit biofilm formation, when pathogenic Staphylococcus aureus (MRSA, USA 300) are grown on HA-xZnO (x = 0, 5, 7.5, and 10 wt %) biocomposites in vitro. After bacterial preincubation for 4 h, a low intensity DC EF (1V/cm) was applied for different time periods (t = 6, 12, 18, and 24 h).

View Article and Find Full Text PDF

In addressing the issue of prosthetic infection, this work demonstrated the synergistic effect of the application of static magnetic field (SMF) and ferrimagnetic substrate properties on the bactericidal property in vitro. This aspect was studied using hydroxyapatite (HA)-xFe3 O4 (x=10, 20, and 40 wt.%) substrates, which have different saturation magnetization properties.

View Article and Find Full Text PDF

The application of electromagnetic field in the context of bacteria associated infections on biomaterial surfaces has not been extensively explored. In this work, we applied a moderate intensity static magnetic field (100 mT) to understand the adhesion and growth behavior of both gram positive (S. epidermidis) and gram negative bacteria (E.

View Article and Find Full Text PDF