Delineation of clinical complications secondary to fungal infections, such as cryptococcal meningitis, and the concurrent emergence of multidrug resistance in large population subsets necessitates the need for the development of new classes of antifungals. Herein, we report a series of ring-modified histidine-containing short cationic peptides exhibiting anticryptococcal activity via membrane lysis. The -1 position of histidine was benzylated, followed by iodination at the C-5 position via electrophilic iodination, and the dipeptides were obtained after coupling with tryptophan.
View Article and Find Full Text PDFWe investigated synthetic amino acid-based approach to design short peptide-based antibiotics. Tautomerically restricted, amphiphilic 1-aryl-l-histidines along with hydrophobic tryptophan were utilized to synthesize the designed peptides. l-Trp-l-His(1-biphenyl)-NHBzl (12e, IC = 1.
View Article and Find Full Text PDFIn pursuit of ultrashort peptide-based antifungals, a new structural class, His(2-aryl)-Trp-Arg is reported. Structural changes were investigated on His-Trp-Arg scaffold to demonstrate the impact of charge and lipophilic character on the biological activity. The presence and size of the aryl moiety on imidazole of histidine modulated overall amphiphilic character, and biological activity.
View Article and Find Full Text PDFThe inhibition of amyloid-β (Aβ) aggregation is a promising approach towards therapeutic intervention for Alzheimer's disease (AD). Thirty eight tetrapeptides based upon AβC-terminus fragment of the parent Aβ peptide were synthesized. The sequential replacement/modification employing unnatural amino acids imparted scaffold diversity, augmented activity, enhanced blood brain barrier permeability and offered proteolytic stability to the synthetic peptides.
View Article and Find Full Text PDFThe C-terminus fragment (Val-Val-Ile-Ala) of amyloid-β is reported to inhibit the aggregation of the parent peptide. In an attempt to investigate the effect of sequential amino-acid scan and C-terminus amidation on the biological profile of the lead sequence, a series of tetrapeptides were synthesized using MW-SPPS. Peptide D-Phe-Val-Ile-Ala-NH (12c) exhibited high protection against β-amyloid-mediated-neurotoxicity by inhibiting Aβ aggregation in the MTT cell viability and ThT-fluorescence assay.
View Article and Find Full Text PDFSince the introduction of acetyl cholinesterase inhibitors as the first approved drugs by the US Food and Drug Administration for Alzheimer's disease (AD) in clinics, less than satisfactory success in the design of anti-AD agents has impelled the scientists to also focus toward inhibition of Aβ aggregation. Considering the specific binding of fragments for their parent peptide, herein, we synthesized more than 40 new peptides based on a C-terminus tetrapeptide fragment of Aβ. Initial screening by MTT cell viability assay and supportive results by ThT fluorescence assay led us to identify a tetrapeptide showing complete inhibition for Aβ aggregation.
View Article and Find Full Text PDFA series of ferrocene appended chalcone allied triazole coupled organosilatranes (FCTSa 7-FCTSa 12) were synthesised with the aim of amalgamating the pharmacological action of the constituting moieties into a single molecular scaffold. All the synthesised silatranes were well characterized by various spectroscopic techniques like IR, H NMR, C NMR and elemental analysis. Organosilatranes were then evaluated for their biological alacrity against bacterial and fungal strains compared with the standard drugs Rifampicin and Amphotericin B respectively.
View Article and Find Full Text PDFFast emerging antibiotic resistance in pathogens requires special attention for strengthening the reservoir of antimicrobial compounds. In view of this, several peptides with known antimicrobial activities have been reported to enhance the efficacy of antibiotics against multidrug resistant (MDR) pathogens. In the present study, potential of peptides having distinct mechanism of action, if any, was evaluated to improve the efficacy of conventional antibiotics against methicillin-resistant S.
View Article and Find Full Text PDFThe new structural classes of ultrashort peptides that exhibit potent microbicidal action have potential as future drugs. Herein, we report that C-2 arylated histidines containing tripeptides His(2-Ar)-Trp-His(2-Ar) exhibit potent antifungal activity against Cryptococcus neoformans with high selectivity. The most potent peptide 12f [His(2-biphenyl)-Trp-His(2-biphenyl)] displayed high in vitro activity against C.
View Article and Find Full Text PDFAmyloid-β aggregation is a major etiological phenomenon in Alzheimer's disease. Herein, we report peptide-based inhibitors that diminish the amyloid load by obviating Aβ aggregation. Taking the hexapeptide fragment, Aβ32-37, as lead, more than 40 new peptides were synthesized.
View Article and Find Full Text PDFA series of chalconyl blended triazole allied silatranes (7a-g/8a-g/9a-g) were synthesized in good yields using a simple, economical and biocompatible synthetic route. The blend of three different pharmacologically active moieties into a single scaffold resulted into synergistic effect in their bio-activity. Various substitutions were tried to study the structure activity relationship (SAR) of the synthesized compounds on the basis of biological results.
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2014
Curcumin (CUR) shows antifungal activity against a range of pathogenic fungi, including Candida albicans. The reported mechanisms of action of CUR include reactive oxygen species (ROS) generation, defects in the ergosterol biosynthesis pathway, decrease in hyphal development, and modulation of multidrug efflux pumps. Reportedly, each of these pathways is independently linked to the cell wall machinery in C.
View Article and Find Full Text PDFBackground: Three de novo designed low molecular weight cationic peptides (IJ2, IJ3 and IJ4) containing an unnatural amino acid α,β-didehydrophenylalanine (∆Phe) exhibited potent antifungal activity against fluconazole (FLC) sensitive and resistant clinical isolates of Candida albicans as well as non-albicans and other yeast and filamentous pathogenic fungi. In the present study, their synthesis, susceptibility of different fungi and the mechanism of anti-candidal action have been elucidated.
Methods: The antimicrobial peptides (AMPs) were synthesized by solid-phase method and checked for antifungal activity against different yeasts and fungi by broth microdilution method.
Effect of cinnamaldehyde (CD), 4-hydroxy-3-methoxy cinnamaldehyde (HMCD) and 3,5-dimethoxy-4-hydroxy cinnamaldehyde (HDMCD) on growth and virulence factors of standard (Candida albicans 90028) and 26 oral isolates of C. albicans has been investigated. Growth was significantly inhibited by all three compounds in both solid and liquid medium, no systematic difference was observed between various isolates.
View Article and Find Full Text PDFIn the present work, we investigated the antifungal activity of two de novo designed, antimicrobial peptides VS2 and VS3, incorporating unnatural amino acid α,β-dehydrophenylalanine (ΔPhe). We observed that the low-hemolytic peptides could irreversibly inhibit the growth of various Candida species and multidrug resistance strains at MIC(80) values ranging from 15.62 μM to 250 μM.
View Article and Find Full Text PDF