Publications by authors named "Indrek Viil"

The crystal structure of a complex of the catalytic subunit (type alpha) of cAMP-dependent protein kinase (PKA C alpha) with ARC-type inhibitor (ARC-1034), the presumed lead scaffold of previously reported adenosine-oligo-arginine conjugate-based (ARC-type) inhibitors, was solved. Structural elements important for interaction with the kinase were established with specifically modified derivatives of the lead compound. On the basis of this knowledge, a new generation of inhibitors, conjugates of adenosine-4'-dehydroxymethyl-4'-carboxylic acid moiety and oligo(D-arginine), was developed with inhibitory constants well into the subnanomolar range.

View Article and Find Full Text PDF

The bisubstrate fluorescent probe ARC-583 (Adc-Ahx-(D-Arg)(6)-d-Lys(5-TAMRA)-NH2) and its application for the characterization of both ATP- and protein/peptide substrate-competitive inhibitors of protein kinases PKA (cyclic AMP-dependent protein kinase) and ROCK (rho kinase) in fluorescence polarization-based assay are described. High affinity of the probe (K(D)=0.48 nM toward PKA) enables its application for the characterization of inhibitors with nanomolar and micromolar potency and determination of the active concentration of the kinase in individual experiments as well as in the high-throughput screening format.

View Article and Find Full Text PDF

Conjugates of oligoarginine peptides with adenine, adenosine, adenosine-5'-carboxylic acid, and 5-isoquinolinesulfonic acid were synthesized and characterized as bisubstrate-analog inhibitors of cAMP-dependent protein kinase. Adenosine and adenine derivatives were connected to the N- or C-terminus of peptides containing four to six L- or D-arginine residues via a linker with a length that had been optimized in structure-activity studies. The orientation of the peptide chain strongly affected the activity of compounds incorporating D-arginines.

View Article and Find Full Text PDF