Publications by authors named "Indrani Jha"

Article Synopsis
  • Nanotechnology, particularly involving iron oxide nanoparticles (FeO NPs) combined with choline hydroxide ionic liquid (FeO-CHOH), shows promising advancements yet lacks comprehensive understanding of its health implications, especially on blood enzymes.
  • Characterization techniques such as FTIR, XRD, and TEM reveal unique properties of these magnetic nanoparticles (MNPs), indicating enhanced stability and interaction with cytochrome c (Cyt c), thus facilitating biomedical applications.
  • The presence of MNPs improves Cyt c's enzymatic activity and stability, suggesting the potential for long-term preservation and the formation of beneficial bionanoconjugates, highlighting their relevance in biomedical research.
View Article and Find Full Text PDF

In the present work, changes in the structure and stability of stem bromelain (BM) are observed in the presence of a set of four imidazolium-based ionic liquids (ILs) such as 1-ethyl-3-methylimidazolium chloride ([Emim][Cl]), 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]), 1-hexyl-3-methylimidazolium chloride ([Hmim][Cl]), and 1-decyl-3-methylimidazolium chloride ([Dmim][Cl]), using various biophysical techniques. Fluorescence spectroscopy is used to observe the changes taking place in the microenvironment around the tryptophan (Trp) residues of BM and its thermal stability because of its interactions with the ILs at different concentrations. Near-UV circular dichroism results showed that the native structure of BM remained preserved only at lower concentrations of ILs.

View Article and Find Full Text PDF

Insulin (In) based formulation has been used over decades for the cure of In-dependent diabetic patients, however, more attempts are still required to improve the remedial use of In. In this regard, the use of green tea has become widespread nowadays. However, it is unknown that (+)-catechin hydrate (CAT), a major component of green tea which enhances anti-diabetic activity of In, will or will not enhance the structure and stability of In if ingested with sugars.

View Article and Find Full Text PDF

The broader scope of ILs in chemical sciences particularly in pharmaceutical, bioanalytical and many more applications is increasing day by day. Hitherto, a very less amount of research is available in the depiction of conformational stability, activity, and thermal stability of enzymes in the presence of ILs. In the present study, the perturbation in the structure, stability, and activity of stem bromelain (BM) has been observed in the presence of 1-allyl-3-methylimidazolium chloride ([Amim][Cl]) using various techniques.

View Article and Find Full Text PDF

The large amount of attention earned by ionic liquids (ILs) in the various physical and chemical sciences has been attributed to their unique, designer nature. In the past few years, the role of ILs in protein folding/unfolding has been rapidly growing. In light of the increasing importance of ILs, it is desirable to systematize the ion effects on protein properties such as structure stability, activity and enantioselectivity.

View Article and Find Full Text PDF

Spectroscopic and molecular docking investigations were carried out to characterize the effect of imidazolium-based ionic liquids (ILs) with varying chain length of the cation on the thermal stability as well as spectroscopic behavior of heme protein hemoglobin (Hb). The goal of this work is to investigate the role of concentration of ILs, the effect of alkyl chain length of the cation, and the related Hofmeister series on the structure of Hb. To achieve this goal, a series of ILs possessing same Cl(-) anion and a set of cation [Cnmim](+) with increasing chain length such as 1-ethyl-3-methylimidazolium chloride ([Emim][Cl]), 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]), 1-hexyl-3-methylimidazolium chloride ([Hmim][Cl]), and 1-decyl-3-methylimidazolium chloride ([Dmim][Cl]) were used in this study.

View Article and Find Full Text PDF

Protein stability in ionic solution depends on the delicate balance between protein-ion and ion-ion interactions. To address the ion specific effects on the protein, we have examined the stability of myoglobin (Mb) in the presence of buffer and ammonium-based ionic liquids (ILs) (50%, v/v). Here, fluorescence and circular dichroism (CD) spectroscopy experiments are used to study the influence of ILs on structure and stability of Mb.

View Article and Find Full Text PDF

The nature of solvent-biomolecule interactions is generally weak and non-specific. The addition of ionic liquids (ILs), which have emerged as a new class of solvents, strengthen the stability of some proteins whereas the same ILs weaken the stability of some other proteins. Although ILs are commonly used for the stabilization of biomolecules, the bimolecular interactions of their stabilization-destabilization is still an active subject of considerable interest and studies on this topic have been limited.

View Article and Find Full Text PDF