A sodium alginate (Alg) based REDOX (reduction and oxidation)-responsive and fluorescent active microgel was prepared via water in oil (w/o) mini-emulsion polymerization technique. Here, we initially synthesized sodium alginate-based disulfide cross linked microgels and after that those microgels were tagged with rhodamine amine derivative (RhB-NH) by ionic interaction to get the pH-responsive fluorescent property. Functionalized microgels were characterized using H NMR, FTIR, DLS, HRTEM, FESEM, UV-vis, and fluorescence spectroscopy analyses.
View Article and Find Full Text PDFFrequent mutation and variable immunological protection against vaccination is a common feature for COVID-19 pandemic. Early detection and confinement remain key to controlling further spread of infection. In response, we have developed an aptamer-based system that possesses both diagnostic and therapeutic potential towards the virus.
View Article and Find Full Text PDFThe efficient monitoring and early detection of viruses may provide essential information about diseases. In this work, we have highlighted the interaction between DNA and a two-dimensional (2D) metal oxide for developing biosensors for further detection of viral infections. Spectroscopic measurements have been used to probe the efficient interactions between single-stranded DNA (ssDNA) and the 2D metal oxide and make them ideal candidates for detecting viral infections.
View Article and Find Full Text PDFAs newer variants of SARS-CoV-2 continue to pose major threats to global human health and economy, identifying novel druggable antiviral targets is the key toward sustenance. Here, we identify an evolutionarily conserved "ExLxL" ("E-L-L") motif present within the HR2 domain of all human and nonhuman coronavirus spike (S) proteins that play a crucial role in stabilizing its postfusion six-helix bundle (6-HB) structure and thus, fusion-mediated viral entry. Mutations within this motif reduce the fusogenicity of the S protein without affecting its stability or membrane localization.
View Article and Find Full Text PDFAs newer variants of SARS-CoV-2 continue to pose major threats to global human health and economy, identifying novel druggable antiviral targets is the key towards sustenance. Here, we identify an evolutionary conserved E-L-L motif present within the HR2 domain of all human and non-human coronavirus spike (S) proteins that play a crucial role in stabilizing the post-fusion six-helix bundle (6-HB) structure and thus, fusion-mediated viral entry. Mutations within this motif reduce the fusogenicity of the S protein without affecting its stability or membrane localization.
View Article and Find Full Text PDF