Publications by authors named "Indrajit Sinha"

This work integrates a unique porous carbon with a binary heterostructured NiFeO/CuWO composite to enhance electrocatalytic activity towards the oxygen evolution reaction. The NiFeO/CuWO binary heterostructure was prepared through the conventional co-precipitation method. The porous carbon with turbostratic order was obtained by the selective etching of SiO nanodomains from preceramic polymer-derived SiOC.

View Article and Find Full Text PDF

The present study discloses the fabrication of efficient p-n heterojunctions using n-type polymeric bulk carbon nitride (b-CN, = 2.7 eV) or exfoliated nanosheets of carbon nitride (NSCN, = 2.9 eV) with p-type spinel ferrite CaFeO (CFO, = 1.

View Article and Find Full Text PDF

Low HO utilization efficiency for hydroxyl radical generation, acidic pH, and recyclability are critical limitations of heterogeneous Fenton and photo-Fenton catalysts. The present research shows that the optimum Mo doping of FeS particles can largely alleviate these catalysis constraints. A solvothermal protocol was followed to prepare polyvinyl pyrrolidone (PVP) stabilized FeS and Mo-doped FeS particles.

View Article and Find Full Text PDF

In this work, Ag nanoparticles decorated with NiFeO/CuWO heterostructure were synthesized using the step-wise precipitation method. The influence of varying Ag loading on the NiFeO/CuWO heterostructure and its electrochemical OER performance was extensively studied in 1 M KOH electrolyte. The obtained LSV profile was analyzed to determine the overpotential, Tafel slope, and onset potential.

View Article and Find Full Text PDF

Fabrication of codoped photocatalysts is a developing area of research. Herein, we explore the visible light photocatalytic properties of Cu, Zn codoped BiVO particles. Doping lower valent cations (Cu and Zn) makes the BiVO surface more acidic and enables us to target the basic crystal violet (CV) dye.

View Article and Find Full Text PDF
Article Synopsis
  • Ni@C nanoparticles were created using the sol-gel method to effectively adsorb methyl orange (MO) from water solutions, with characterization techniques confirming their structure and size.
  • The N7 sample showed the highest specific magnetization (55.78 emu/g) and best adsorption capacity (~32 mg/g), retaining 81% efficiency after five cycles.
  • The study included detailed adsorption isotherm and kinetic analysis, providing insights into how the adsorption process works.
View Article and Find Full Text PDF

The demand for environmentally friendly and sustainable resource utilization techniques for recycling waste printed circuit boards is significant due to their status as valuable secondary resources, containing high-purity copper and precious metals. In this context, Cu(OH)/CuO and CuO nanostructures were fabricated using alkaline precipitation and low-temperature aging methods using the strip solution originated from laboratory-scale spent mobile phone printed circuit board recovery process. XRD, FTIR, FESEM-EDX, and TEM were utilized to characterize the as-recovered nanoproducts.

View Article and Find Full Text PDF

Discarded Printed Circuit Boards (PCBs) are one of the secondary resources of high-purity copper, and precious materials, which if disposed off inappropriately may present several environmental risks. This study focuses on the production of copper oxide nanoparticles (CuO NPs) from reclaimed copper via a facile precipitation route to obtain a value-added nanoproduct. The synthesis involved the dissolution of downsized PCBs, leaching of Cu into the solution phase and the precipitation of nanoparticles (NPs) in an alkaline medium.

View Article and Find Full Text PDF

Rapid industrial growth causes considerable environmental havoc, adversely affecting human and aqueous life. It becomes a significant concern to deal with adequate wastewater treatment strategies by converging on water scarcity. This research work explored the synthesis of titanium-substituted Y-type barium hexaferrite (Co-Y), having a general formula of BaCoFeTiO (x = 0.

View Article and Find Full Text PDF

A narrow band gap restricts photocatalytic applications of AgO nanoparticles, but appropriate doping can favorably modify this aspect. Given this, density functional theory (DFT) calculations were conducted, revealing that substitutional sulfur doping of AgO could increase its bandgap and stabilize oxygen vacancies. A hydrothermal precipitation protocol was employed to prepare sulfur-doped (S-doped) AgO nanoparticles.

View Article and Find Full Text PDF

Foreign element doping can produce new photocatalysts with different band edge positions and adsorption properties. A composite of such a doped semiconductor with another component should enhance its photocatalytic properties towards a target substrate. The present investigation used a simple hydrothermal protocol to prepare Cd-doped AgO nanoparticles.

View Article and Find Full Text PDF

Glucocorticoids, such as dexamethasone (Dex), are used to prevent common side effects induced by chemotherapy and are heavily prescribed for solid cancers such as breast cancer. There is substantial pre-clinical data to support that Dex activation of the glucocorticoid receptor overrides chemotherapy-induced apoptosis in breast cancer cell lines. These findings are compounded by a recent study demonstrating that increased glucocorticoid receptor activation by endogenous stress hormones increased breast cancer heterogeneity and metastasis.

View Article and Find Full Text PDF

Very few aqueous medium experimental studies focus on the molecular interaction mechanism between the adsorbent and the adsorbate. Herein, we investigate the adsorption of two organic pollutants, phenol and p-nitrophenol (PNP) in dilute aqueous solution conditions on kaolinite (001) surface through classical molecular dynamics (MD) simulations. The present investigation addresses both adsorption isotherms and mechanistic issues.

View Article and Find Full Text PDF

The present investigation involves synthesis and characterization of MCM-41-AEAPTMS-Fe(iii)Cl using coordinated Fe(iii) on MCM-41-AEAPTMS for efficient removal of hazardous Cr(vi) ions from aqueous solution. The adsorbent MCM-41-AEAPTMS-Fe(iii)Cl was characterized using small-angle X-ray diffraction (SAX), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier-transform infrared (FT-IR) and Brunauer-Emmett-Teller (BET) surface analyzer techniques. The BET surface area was found to be 87.

View Article and Find Full Text PDF

While the knowledge of the adsorption properties of components of a composite heterogeneous photocatalyst is critical to its applicability to a particular reaction, there has been little research in this direction. The present research is on the development of AgI/CuWO nanocomposites that photocatalytically degraded ciprofloxacin and rhodamine B in an aqueous medium under visible light irradiation. The nanocomposites were prepared by a step-wise precipitation protocol.

View Article and Find Full Text PDF

The mechanism of stabilization of silver nanoparticles (Ag NPs) by 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid (IL) is elucidated from experimental spectroscopic investigations and density functional theory (DFT) calculations. FTIR spectrum of the synthesized IL stabilized silver nanoparticles reveals small red shift in B-F stretching frequency while C-H stretching remains unshifted. There is no shift in NMR peaks of IL before and after the synthesis of IL stabilized Ag NPs.

View Article and Find Full Text PDF

There is little research on the visible light photocatalytic properties of the hybrids of plasmonic metals and organic molecules (OM) with the HOMO-LUMO gap in the visible range. Here, we investigate the mechanism of the visible light enhanced reduction of p-nitrophenol (PNP) by glycerol (a green reductant) at ambient temperature over curcumin functionalized Ag nanoparticles (c-AgNPs). The catalytic activity got significantly boosted under visible light irradiation.

View Article and Find Full Text PDF

The alkaline medium oxygen reduction reaction (ORR) activities of Ag-Cu bimetallic nanoparticles (BNPs), consisting of neighboring Ag and Cu domains, were studied and compared with those of pure Ag and Cu nanoparticles prepared by the same polyol route. Three variations of Ag-Cu BNPs viz. Ag-Cu (4:1), Ag-Cu (2:1), Ag-Cu (1:1) BNPs were considered.

View Article and Find Full Text PDF

Cost-effective recycling of e-waste (from computer printed circuit boards, PCB's) for the synthesis of metal oxide nanocomposites is demonstrated. Metals in electronic components of waste memory slots were leached out using nitric acid (HNO). Compositional analyses of the filtrate obtained after leaching were 66 wt.

View Article and Find Full Text PDF

Synthesis of silver nanoparticles (AgNPs) in presence of copper salt (as the etchant) led to the formation of nanoparticle samples with different fractions of anisotropic particles. The proportion of anisotropic nanoparticles decreased with increase in ratio of precursor Cu salt in the preparation protocol. These AgNPs samples were found to catalyse p-nitrophenol reduction by glycerol and Fenton oxidation of methyl orange.

View Article and Find Full Text PDF

Chromosomal instability (CIN), a high rate of chromosome loss or gain, is often associated with poor prognosis and drug resistance in cancers. Aneuploid, including near-polyploid, cells contain an abnormal number of chromosomes and exhibit CIN. The post-mitotic cell fates following generation of different degrees of chromosome mis-segregation and aneuploidy are unclear.

View Article and Find Full Text PDF

The most commonly utilized class of chemotherapeutic agents administered as a first-line therapy are antimitotic drugs; however, their clinical success is often impeded by chemoresistance and disease relapse. Hence, a better understanding of the cellular pathways underlying escape from cell death is critical. Mitotic slippage describes the cellular process where cells exit antimitotic drug-enforced mitotic arrest and "slip" into interphase without proper chromosome segregation and cytokinesis.

View Article and Find Full Text PDF

Curcumin-functionalized Ag/Ag O (c-Ag/Ag O) nanocomposites with varying proportions of curcumin and Ag/Ag O were prepared by a simple one pot green synthesis protocol in aqueous medium. The plasmonic band undergoes slight redshift, broadening and decrease in intensity with increase in the proportion of Ag O formed. These composite nanoparticles were found to be efficient visible-light photocatalysts for aerobic oxidation of methyl orange and rhodamine B (RhB).

View Article and Find Full Text PDF

The Ras/Raf/MEK/ERK pathway conveys growth factor and mitogen signalling to control the phosphorylation of a plethora of substrates regulating proliferation, survival, and migration. The Ras signalling pathway is frequently associated with poor prognosis and drug resistance in various cancers including those of the blood, breast and prostate. Activation of the downstream effector ERK does not always occur via a linear cascade of events; complicating the targeting of this pathway therapeutically.

View Article and Find Full Text PDF

The advent of effective targeted therapeutics has led to increasing emphasis on precise biomarkers for accurate patient stratification. Here, we describe the role of ACK1, a non-receptor tyrosine kinase in abrogating migration and invasion in KRAS mutant lung adenocarcinoma. Bosutinib, which inhibits ACK1 at 2.

View Article and Find Full Text PDF