This study evaluates the efficacy of twin screw melt granulation (TSMG), and hot-melt extrusion (HME) techniques in enhancing the solubility and dissolution of simvastatin (SIM), a poorly water-soluble drug with low bioavailability. Additionally, the study explores the impact of binary polymer blends on the drug's miscibility, solubility, and in vitro release profile. SIM was processed with various polymeric combinations at a 30% / drug load, and a 1:1 ratio of binary polymer blends, including Soluplus (SOP), Kollidon K12 (K12), Kollidon VA64 (KVA), and Kollicoat IR (KIR).
View Article and Find Full Text PDFPurpose: The application of 3D printing technology in drug delivery is often limited by the challenges of achieving precise control over drug release profiles. The goal of this study was to apply surface equations to construct 3D printed tablet models, adjust the functional parameters to obtain multiple tablet models and to correlate the model parameters with the in vitro drug release behavior.
Methods: This study reports the development of 3D-printed tablets using surface geometries controlled by mathematical functions to modulate drug release.
Quetiapine fumarate (QTF) was approved for the treatment of schizophrenia and acute manic episodes. QTF can also be used as an adjunctive treatment for major depressive disorders. QTF oral bioavailability is limited due to its poor aqueous solubility and pre-systemic metabolism.
View Article and Find Full Text PDF