Few studies have investigated the performance of anaerobic digestion (AD) to convert animal and agro-industrial wastes to organic fertilizers over a long-term field conditions. This paper studied three large-scale mesophilic digesters (D1eD3) over two years for their effects on feedstocks, which were dairy manure for D1 and D2 and co-digestion mixed manure and agro-industrial wastes for D3. Hydraulic retention times (HRT) were 9 d for D1, 12 d for D2, and 34 d for D3.
View Article and Find Full Text PDFLarge quantities of biofuel production are expected from bioenergy crops at a national scale to meet US biofuel goals. It is important to study biomass production of bioenergy crops and the impacts of these crops on water quantity and quality to identify environment-friendly and productive biofeedstock systems. SWAT2012 with a new tile drainage routine and improved perennial grass and tree growth simulation was used to model long-term annual biomass yields, streamflow, tile flow, sediment load, and nutrient losses under various bioenergy scenarios in an extensively agricultural watershed in the Midwestern US.
View Article and Find Full Text PDFBest management practices (BMPs) have been widely used to address hydrology and water quality issues in both agricultural and urban areas. Increasing numbers of BMPs have been studied in research projects and implemented in watershed management projects, but a gap remains in quantifying their effectiveness through time. In this paper, we review the current knowledge about BMP efficiencies, which indicates that most empirical studies have focused on short-term efficiencies, while few have explored long-term efficiencies.
View Article and Find Full Text PDFDrought is one of the most widespread extreme climate events with a potential to alter freshwater availability and related ecosystem services. Given the interconnectedness between freshwater availability and many ecosystem services, including food provisioning, it is important to evaluate the drought implications on freshwater provisioning and food provisioning services. Studies about drought implications on streamflow, nutrient loads, and crop yields have been increased and these variables are all process-based model outputs that could represent ecosystem functions that contribute to the ecosystem services.
View Article and Find Full Text PDFWe present a comparison of two ecohydrologic models commonly used for planning land management to assess the production of hydrologic ecosystem services: the Soil and Water Assessment Tool (SWAT) and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) annual water yield model. We compare these two models at two distinct sites in the US: the Wildcat Creek Watershed in Indiana and the Upper Upatoi Creek Watershed in Georgia. The InVEST and SWAT models provide similar estimates of the spatial distribution of water yield in Wildcat Creek, but very different estimates of the spatial distribution of water yield in Upper Upatoi Creek.
View Article and Find Full Text PDFTotal Maximum Daily Load is a water quality standard to regulate water quality of streams, rivers and lakes. A wide range of approaches are used currently to develop TMDLs for impaired streams and rivers. Flow and load duration curves (FDC and LDC) have been used in many states to evaluate the relationship between flow and pollutant loading along with other models and approaches.
View Article and Find Full Text PDFWatershed managers have largely embraced targeting of agricultural conservation as a way to manage strategically non-point source pollution from agricultural lands. However, while targeting of particular watersheds is not uncommon, targeting farms and fields within a specific watershed has lagged. In this work, we employed a qualitative approach, using farmer interviews in west-central Indiana to better understand their views on targeting.
View Article and Find Full Text PDFSuites of Best Management Practices (BMPs) are usually selected to be economically and environmentally efficient in reducing nonpoint source (NPS) pollutants from agricultural areas in a watershed. The objective of this research was to compare the selection and placement of BMPs in a pasture-dominated watershed using multiobjective optimization and targeting methods. Two objective functions were used in the optimization process, which minimize pollutant losses and the BMP placement areas.
View Article and Find Full Text PDFThe impacts of urbanization on hydrology and water quality can be minimized with the use of low impact development (LID) practices in urban areas. This study assessed the performance of rain barrel/cistern and porous pavement as retrofitting technologies in two urbanized watersheds of 70 and 40 km(2) near Indianapolis, Indiana. Six scenarios consisting of the watershed existing condition, 25% and 50% implementation of rain barrel/cistern and porous pavement, and 25% rain barrel/cistern combined with 25% porous pavement were evaluated using a proposed LID modeling framework and the Long-Term Hydrologic Impact Assessment (L-THIA)-LID model.
View Article and Find Full Text PDFThere is an abundant supply of corn stover in the United States that remains after grain is harvested which could be used to produce cellulosic biofuels mandated by the current Renewable Fuel Standard (RFS). This research integrates the Soil Water Assessment Tool (SWAT) watershed model and the DayCent biogeochemical model to investigate water quality and soil greenhouse gas flux that results when corn stover is collected at two different rates from corn-soybean and continuous corn crop rotations with and without tillage. Multiobjective watershed-scale optimizations are performed for individual pollutant-cost minimization criteria based on the economic cost of each cropping practice and (individually) the effect on nitrate, total phosphorus, sediment, or global warming potential.
View Article and Find Full Text PDFInt J Environ Res Public Health
October 2012
Implementing a suite of best management practices (BMPs) can reduce non-point source (NPS) pollutants from various land use activities. Watershed models are generally used to evaluate the effectiveness of BMP performance in improving water quality as the basis for watershed management recommendations. This study evaluates 171 management practice combinations that incorporate nutrient management, vegetated filter strips (VFS) and grazing management for their performances in improving water quality in a pasture-dominated watershed with dynamic land use changes during 1992–2007 by using the Soil and Water Assessment Tool (SWAT).
View Article and Find Full Text PDFIn many states of the US, the total maximum daily load program has been widely developed for watershed water quality restoration and management. However, the total maximum daily load is often represented as an average daily pollutant load based on average long-term flow conditions, and as such, it does not adequately describe the problems they aim to address. Without an adequate characterization of water quality problems, appropriate solutions cannot be identified and implemented.
View Article and Find Full Text PDFNonpoint source (NPS) pollutants such as phosphorus, nitrogen, sediment, and pesticides are the foremost sources of water contamination in many of the water bodies in the Midwestern agricultural watersheds. This problem is expected to increase in the future with the increasing demand to provide corn as grain or stover for biofuel production. Best management practices (BMPs) have been proven to effectively reduce the NPS pollutant loads from agricultural areas.
View Article and Find Full Text PDFWater quality estimation in fresh and marine water systems with in situ above-water spectroscopy requires measurement of the volume reflectance (rhov) of water bodies. However, the above-water radiometric measurements include surface reflection (Lr) as a significant component along with volume reflection. The Lr carries no information on water quality, and hence it is considered as a major source of error in in situ above-water spectroscopy.
View Article and Find Full Text PDFTotal mercury (THg) and mono-methylmercury (MeHg) levels in water, sediment, and largemouth bass (LMB) (Micropterus salmoides) were investigated at 52 sites draining contrasting land use/land cover and habitat types within the Mobile Alabama River Basin (MARB). Aqueous THg was positively associated with iron-rich suspended particles and highest in catchments impacted by agriculture. Sediment THg was positively associated with sediment organic mater and iron content, with the highest levels observed in smaller catchments influenced by wetlands, followed by those impacted by agriculture or mixed forest, agriculture, and wetlands.
View Article and Find Full Text PDF