The sweet taste of saccharides, such as sucrose and glucose, and other sweeteners is known to result from activation of the TAS1R2/R3 receptor expressed in taste receptor cells (TRCs) of the taste bud. Recent reports have suggested the existence of an additional sweet taste signaling pathway for metabolizable saccharides that is dependent on the activity of glucose transporters, especially SGLT1, also expressed in TRCs. We have investigated the potential contribution of SGLT1 to glucose taste signaling in humans.
View Article and Find Full Text PDFLow- and no-calorie sweeteners reduce the amount of carbohydrates in foods and beverages. However, concerns about taste perception surrounding the role of non-nutritive sweeteners in the oral cavity remain unanswered. One of the parameters that influences taste perception is the diffusion coefficient of the sweetener molecules inside the mucin layer lining the mouth.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2023
Ensemble learning techniques have shown promise in improving the accuracy of landslide models by combining multiple models to achieve better predictive performance. In this study, several ensemble methods (Dagging, Bagging, and Decorate) and a radial basis function classifier (RBFC) were combined to predict landslide susceptibility in the Trung Khanh district of the Cao Bang Province, Vietnam. The ensemble models were developed using a geospatial database containing 45 historical landslides (1074 points) and thirteen influencing variables characterizing the topography, geology, land use/cover, and human activities of the study area.
View Article and Find Full Text PDFGroundwater is one of the major valuable water resources for the use of communities, agriculture, and industries. In the present study, we have developed three novel hybrid artificial intelligence (AI) models which is a combination of modified RealAdaBoost (MRAB), bagging (BA), and rotation forest (RF) ensembles with functional tree (FT) base classifier for the groundwater potential mapping (GPM) in the basaltic terrain at DakLak province, Highland Centre, Vietnam. Based on the literature survey, these proposed hybrid AI models are new and have not been used in the GPM of an area.
View Article and Find Full Text PDFBackground: Kit lot change in clinical biochemistry labs leads to variations in patient results. This study planned to identify variations during 60 reagent lot changes in our laboratory during the period from June 2018 to May 2019.
Methods: A statistical analysis was performed to identify the difference between patient samples results variations and QC results.
The main aim of this study is to assess groundwater potential of the DakNong province, Vietnam, using an advanced ensemble machine learning model (RABANN) that integrates Artificial Neural Networks (ANN) with RealAdaBoost (RAB) ensemble technique. For this study, twelve conditioning factors and wells yield data was used to create the training and testing datasets for the development and validation of the ensemble RABANN model. Area Under the Receiver Operating Characteristic (ROC) curve (AUC) and several statistical performance measures were used to validate and compare performance of the ensemble RABANN model with the single ANN model.
View Article and Find Full Text PDFIn this study, we developed Different Artificial Intelligence (AI) models namely Artificial Neural Network (ANN), Adaptive Network based Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM) for the prediction of Compression Coefficient of soil (Cc) which is one of the most important geotechnical parameters. A Monte Carlo approach was used for the sensitivity analysis of the AI models and input parameters. For the construction and validation of the models, 189 soft clayey soil samples were analyzed.
View Article and Find Full Text PDFGroundwater vulnerability assessment is a measure of potential groundwater contamination for areas of interest. The main objective of this study is to modify original DRASTIC model using four objective methods, Weights-of-Evidence (WOE), Shannon Entropy (SE), Logistic Model Tree (LMT), and Bootstrap Aggregating (BA) to create a map of groundwater vulnerability for the Sari-Behshahr plain, Iran. The study also investigated impact of addition of eight additional factors (distance to fault, fault density, distance to river, river density, land-use, soil order, geological time scale, and altitude) to improve groundwater vulnerability assessment.
View Article and Find Full Text PDFFloods are one of the most damaging natural hazards causing huge loss of property, infrastructure and lives. Prediction of occurrence of flash flood locations is very difficult due to sudden change in climatic condition and manmade factors. However, prior identification of flood susceptible areas can be done with the help of machine learning techniques for proper timely management of flood hazards.
View Article and Find Full Text PDFFollowing our interest in new diterpene glycosides with better taste profiles than that of Rebaudioside M, we have recently isolated and characterized Rebaudioside IX-a novel steviol glycoside-from a commercially-supplied extract of Stevia rebaudiana Bertoni. This molecule contains a hexasaccharide group attached at C-13 of the central diterpene core, and contains three additional glucose units when compared with Rebaudioside M. Here we report the complete structure elucidation-based on extensive Nuclear Magnetic Resonance (NMR) analysis (1H, 13C, Correlation Spectroscopy (COSY), Heteronuclear Single Quantum Coherence-Distortionless Enhancement Polarization Transfer (HSQC-DEPT), Heteronuclear Multiple Bond Correlation (HMBC), 1D Total Correlation Spectroscopy (TOCSY), Nuclear Overhauser Effect Spectroscopy (NOESY)) and mass spectral data-of this novel diterpene glycoside with nine sugar moieties and containing a relatively rare 16 α-linked glycoside.
View Article and Find Full Text PDFThe safety of steviol glycosides is based on data available on several individual steviol glycosides and on the terminal absorbed metabolite, steviol. Many more steviol glycosides have been identified, but are not yet included in regulatory assessments. Demonstration that these glycosides share the same metabolic fate would indicate applicability of the same regulatory paradigm.
View Article and Find Full Text PDFIn a continued search for novel diterpenoid glycosides, we recently isolated and characterized a Rebaudioside M derivative with a hydroxyl group at position 15 in the central diterpene core from an extract of Stevia rebaudiana Bertoni. Here we report the complete structure elucidation of 15α-hydroxy-Rebaudioside M (2) on the basis of NMR (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D TOCSY, NOESY) and mass spectral data. Steviol glycoside with a hydroxyl group at C-15 in the central diterpene core has not been previously reported.
View Article and Find Full Text PDFA natural sweetener, Rubusoside (1), subjected to extreme pH and temperature conditions, resulted in the isolation and structural elucidation of one novel rubusoside degradant (7), together with seven known degradants (2-6 and 8-9). ID and 2D NMR spectroscopy (1H, 13C, COSY, HSQC-DEPT, HMBC, and NOESY) and mass spectral data were used to fully characterize the degradant 7.
View Article and Find Full Text PDFFour new minor diterpene glycosides with a rare α-glucosyl linkage were isolated from a cyclodextrin glycosyltransferase glucosylated stevia extract containing more than 98% steviol glycosides. The new compounds were identified as 13-[(2-O-β-D-glucopyranosyl-3-O-(4-O-α-D-glucopyranosyl)-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-[(4-O-α-D-glucopyranosyl-β-D-glucopyranosyl) ester] (1), 13-[(2-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-[(4-O-(4-O-(4-O-α-D-glucopyranosyl)-α-D-glucopyranosyl)-α-D-glucopyranosyl)-β-D-glucopyranosyl ester] (2), 13-[(2-O-β-D-glucopyranosyl-3-O-(4-O-(4-O-(4-O-α-D-glucopyranosyl)-α-D-glucopyranosyl)-α-D-glucopyranosyl)-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-D-glucopyranosyl ester (3), and 13-[(2-O-β-D-glucopyranosyl-3-O-(4-O-(4-O-(4-O-α-D-glucopyranosyl)-α-D-glucopyranosyl)-α-D-glucopyranosyl)-β-D-glucopyranosyl- β-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-[(4-O-α-D-glucopyranosyl-β-D-glucopyranosyl) ester] (4) on the basis of extensive NMR and mass spectral (MS) data as well as hydrolysis studies.
View Article and Find Full Text PDFTo supply the increasing demand of natural high potency sweeteners to reduce the calories in food and beverages, we have looked to steviol glycosides. In this work we report the bioconversion of rebaudioside A to rebaudioside I using a glucosyltransferase enzyme. This bioconversion reaction adds one sugar unit with a 1→3 linkage.
View Article and Find Full Text PDFWe report the isolation and complete structure of an isomer of rebaudioside D, known as rebaudioside D2. This novel steviol glycoside was isolated from a bioconversion reaction of rebaudioside A to rebaudioside D. Rebaudioside D2 possesses a relatively rare 1 --> 6 sugar linkage, which was discovered by extensive analysis of NMR (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D TOCSY and NOESY) and mass spectral data.
View Article and Find Full Text PDFA minor product, rebaudioside M2 (2), from the bioconversion reaction of rebaudioside A (4) to rebaudioside D (3), was isolated and the complete structure of the novel steviol glycoside was determined. Rebaudioside M2 (2) is considered an isomer of rebaudioside M (1) and contains a relatively rare 1→6 sugar linkage. It was isolated and characterized with NMR (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D-TOCSY, and NOESY) and mass spectral data.
View Article and Find Full Text PDFContinuous phytochemical studies of the crude extract of Luo Han Guo (Siraitia grosvenorii) furnished three additional new cucurbitane triterpene glycosides, namely 11-deoxymogroside V, 11-deoxyisomogroside V, and 11-deoxymogroside VI. The structures of all the isolated compounds were characterized on the basis of extensive NMR and mass spectral data as well as hydrolysis studies. The complete ¹H- and ¹³C-NMR spectral assignments of the three unknown compounds are reported for the first time based on COSY, TOCSY, HSQC, and HMBC spectroscopic data.
View Article and Find Full Text PDFThis work aims to review and showcase the unique properties of rebaudioside M as a natural non-caloric potential sweetener in food and beverage products. To determine the potential of rebaudioside M, isolated from Bertoni, as a high potency sweetener, we examined it with the Beidler Model. This model estimated that rebaudioside M is 200-350 times more potent than sucrose.
View Article and Find Full Text PDFFrom the extract of the leaves of Stevia rebaudiana Bertoni, a diterpene glycoside was isolated which was identified as 13-[(2-O-beta-D-glucopyranosyl-3-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-(2-O-beta-D-glucopyranosyl-3-O-beta-D-glucopyranosyl-D-glucopyranosyl) ester (1). The complete 1H and 13C NMR assignment of 1 is reported for the first time, from extensive NMR (1H and 13C, COSY, HSQC, and HMBC) and mass spectral data. Also, we report the sensory evaluation of 1 against sucrose for the sweetness property of this molecule.
View Article and Find Full Text PDFDegradation of rebaudioside M, a minor sweet component of Stevia rebaudiana Bertoni, under conditions that simulated extreme pH and temperature conditions has been studied. Thus, rebaudioside M was treated with 0.1 M phosphoric acid solution (pH 2.
View Article and Find Full Text PDFTwo additional novel minor diterpene glycosides were isolated from the commercial extract of the leaves of Stevia rebaudiana Bertoni. The structures of the new compounds were identified as 13-{β-D-glucopyranosyl-(1 → 2)-O-[β-D-glucopyranosyl-(1 → 3)-β-D-glucopyranosyl-oxy} ent-kaur-16-en-19-oic acid {β-D-xylopyranosyl-(1 → 2)-O-[β-D-glucopyranosyl-(1 → 3)]-O-β-D-glucupyranosyl-ester} (1), and 13-{β-D-6-deoxy-glucopyranosyl-(1 → 2)-O-[β-D-glucopyranosyl-(1 → 3)-β-D-glucopyranosyl-oxy} ent-kaur-16-en-19-oic acid {β-D-glucopyranosyl-(1 → 2)-O-[β-D-glucopyranosyl-(1 → 3)-β-D-gluco-pyranosyl-ester} (2), on the basis of extensive 1D (1H- and 13C-) 2D NMR (COSY, HSQC and HMBC) and MS spectroscopic data as well as chemical studies.
View Article and Find Full Text PDFCatalytic hydrogenation of the exocyclic double bond present between C16 and C17 carbons of the four ent-kaurane diterpene glycosides namely rebaudioside A, rebaudioside B, rebaudioside C, and rebaudioside D isolated from Stevia rebaudiana has been carried out using Pt/C, Pd(OH)2, Rh/C, Raney Ni, PtO2, and 5% Pd/BaCO3 to their corresponding dihydro derivatives with 17α and 17β methyl group isomers. Reactions were performed using the above-mentioned catalysts with the solvents methanol, water, and ethanol/water (8:2) under various conditions. Synthesis of reduced steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR spectral data, including a comparison with reported spectral data.
View Article and Find Full Text PDFCatalytic hydrogenation of rebaudioside B, rebaudioside C, and rebaudioside D; the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana was carried out using Pd(OH)(2). Reduction of steviol glycosides was performed using straightforward synthetic chemistry with the catalyst Pd(OH)(2) and structures of the corresponding dihydro derivatives were characterized on the basis of 1D and 2D nuclear magnetic resonance (NMR) spectral data indicating that all are novel compounds being reported for the first time. Also, the taste properties of all reduced compounds were evaluated against their corresponding original steviol glycosides and sucrose.
View Article and Find Full Text PDFCatalytic hydrogenation of the three ent-kaurane diterpene glycosides isolated from Stevia rebaudiana, namely rubusoside, stevioside, and rebaudioside-A has been carried out using Pd(OH)₂ and their corresponding dihydro derivatives have been isolated as the products. Synthesis of reduced steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR spectral data and chemical studies. Also, we report herewith the sensory evaluation of all the reduced compounds against their corresponding original steviol glycosides and sucrose for the sweetness property of these molecules.
View Article and Find Full Text PDF