Function (Oxf)
November 2024
Our previous work established a role for actin associated myosin motor proteins MYH9 and MYH10 in the trafficking of thick ascending limb (TAL) specific cargoes, uromodulin (UMOD) and Na + K + 2Cl- cotransporter (NKCC2). Here, we have generated a TAL-specific Myh9&10 conditional knockout (Myh9&10 TAL-cKO) mouse model to determine the cell autonomous roles for MYH9&10 proteins in TAL cargo transport and to understand the consequence of TAL dysfunction in the adult kidney. Myh9&10 TAL-cKO mice develop progressive kidney disease with pathological tubular injury confirmed by histological changes, tubular injury markers, upregulation of ER stress/unfolded protein response pathway, and higher blood urea nitrogen and serum creatinine.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
October 2024
This review highlights the complexity of renal epithelial cell membrane architectures and organelles through careful review of ultrastructural and physiological studies published over the past several decades. We also showcase the vital roles played by the actin cytoskeleton and actin-associated myosin motor proteins in regulating cell type-specific physiological functions within the cells of the renal epithelium. The purpose of this review is to provide a fresh conceptual framework to explain the structure-function relationships that exist between the actin cytoskeleton, organelle structure, and cargo transport within the mammalian kidney.
View Article and Find Full Text PDFThe plasticity and diversity of cell types with specialized functions likely defines the capacity of multicellular organisms to adapt to physiologic stressors. The kidney collecting ducts contribute to water, electrolyte, and pH homeostasis and are composed of mature intermingled epithelial cell types that are susceptible to transdifferentiate. The conversion of kidney collecting duct principal cells to intercalated cells is actively inhibited by Notch signaling to ensure urine concentrating capability.
View Article and Find Full Text PDFActin-associated nonmuscle myosin II (NM2) motor proteins play critical roles in a myriad of cellular functions, including endocytosis and organelle transport pathways. Cell type-specific expression and unique subcellular localization of the NM2 proteins, encoded by the Myh9 and Myh10 genes, in the mouse kidney tubules led us to hypothesize that these proteins have specialized functional roles within the renal epithelium. Inducible conditional knockout (cKO) of Myh9 and Myh10 in the renal tubules of adult mice resulted in progressive kidney disease.
View Article and Find Full Text PDFAlagille syndrome patients present with loss of function mutations in either JAG1 or NOTCH2. About 40%-50% of patients have kidney abnormalities, and frequently display multicystic, dysplastic kidneys. Additionally, gain-of-function mutations in NOTCH2 are associated with cystic kidneys in Hajdu-Cheney syndrome patients.
View Article and Find Full Text PDFBackground: Notch signaling is required during kidney development for nephron formation and principal cell fate selection within the collecting ducts. Whether Notch signaling is required in the adult kidney to maintain epithelial diversity, or whether its loss can trigger principal cell transdifferentiation (which could explain acquired diabetes insipidus in patients receiving lithium) is unclear.
Methods: To investigate whether loss of Notch signaling can trigger principal cells to lose their identity, we genetically inactivated and , inactivated the Notch signaling target , or induced expression of a Notch signaling inhibitor in all of the nephron segments and collecting ducts in mice after kidney development.
The diverse epithelial cell types of the kidneys are segregated into nephron segments and the collecting ducts in order to endow each tubular segment with unique functions. The rich diversity of the epithelial cell types is highlighted by the unique membrane channels and receptors expressed within each nephron segment. Our previous work identified a critical role for Myh9 and Myh10 in mammalian endocytosis.
View Article and Find Full Text PDFMedulloblastoma arising from the cerebellum is the most common pediatric brain malignancy, with leptomeningeal metastases often present at diagnosis and recurrence associated with poor clinical outcome. In this study, we used mouse medulloblastoma models to explore the relationship of tumor pathophysiology and dysregulated expression of the NOTCH pathway transcription factor ATOH1, which is present in aggressive medulloblastoma subtypes driven by aberrant Sonic Hedgehog/Patched (SHH/PTCH) signaling. In experiments with conditional ATOH1 mouse mutants crossed to mice, which develop SHH-driven medulloblastoma, animals with transgene expression developed highly penetrant medulloblastoma at a young age with extensive leptomeningeal disease and metastasis to the spinal cord and brain, resembling xenografts of human SHH medulloblastoma.
View Article and Find Full Text PDFGlutamatergic neurotransmission governs excitatory signaling in the mammalian brain, and abnormalities of glutamate signaling have been shown to contribute to both epilepsy and hyperkinetic movement disorders. The etiology of many severe childhood movement disorders and epilepsies remains uncharacterized. We describe a neurological disorder with epilepsy and prominent choreoathetosis caused by biallelic pathogenic variants in FRRS1L, which encodes an AMPA receptor outer-core protein.
View Article and Find Full Text PDFNerve growth factor (NGF) promotes growth, differentiation, and survival of sensory neurons in the mammalian nervous system. Little is known about how NGF elicits faster axon outgrowth or how growth cones integrate and transform signal input to motor output. Using cultured mouse dorsal root ganglion neurons, we found that myosin II (MII) is required for NGF to stimulate faster axon outgrowth.
View Article and Find Full Text PDFVariable requirements for actin during clathrin-mediated endocytosis (CME) may be related to regional or cellular differences in membrane tension. To compensate, local regulation of force generation may be needed to facilitate membrane curving and vesicle budding. Force generation is assumed to occur primarily through actin polymerization.
View Article and Find Full Text PDFRecent evidence suggests that endocytosis, not exocytosis, can be rate limiting for neurotransmitter release at excitatory CNS synapses during sustained activity and therefore may be a principal determinant of synaptic fatigue. At low stimulation frequencies, the probability of synaptic release is linked to the probability of synaptic retrieval such that evoked release results in proportional retrieval even for release of single synaptic vesicles. The exact mechanism by which the retrieval rates are coupled to release rates, known as compensatory endocytosis, remains unknown.
View Article and Find Full Text PDFOsteoclasts are essential for bone dynamics and calcium homeostasis. The cells form a tight seal on the bone surface, onto which they secrete acid and proteases to resorb bone. The seal is associated with a ring of actin filaments.
View Article and Find Full Text PDFThe dynamics of cell adhesion sites control cell morphology and motility. Adhesion-site turnover is thought to depend on the local availability of the acidic phospholipid phosphatidylinositol-4,5-bisphosphate (PIP(2)). PIP(2) can bind to many cell adhesion proteins such as vinculin and talin, but the consequences of this interaction are poorly understood.
View Article and Find Full Text PDF