Publications by authors named "Indiveri C"

Lysine-specific demethylase 1 (LSD1) is a key regulator in cancer epigenetic, and its activity is reliant on flavin adenine dinucleotide (FAD) as a cofactor. In this study, we investigated the correlation between LSD1 and FAD synthase isoform 2 (FADS2) protein levels in pancreatic ductal adenocarcinoma (PDAC) cell lines. We first assessed LSD1 protein and mRNA levels in mutant p53-expressing PANC-1 and MiaPaCa2 cells and p53-null AsPc-1 cells, compared to human pancreatic ductal epithelial (HPDE) controls.

View Article and Find Full Text PDF

A role for acetylcholine in cell proliferation, epithelial mesenchymal transition and invasion has been well assessed and related to the presence of the non-neuronal cholinergic system in lung cancer. For the operation of this non-neuronal system, acetylcholine should be released by a transporter mediated non-quantal process. OCTN1 is one of the transporters able to catalyse acetylcholine efflux and .

View Article and Find Full Text PDF

Microplastics represent a threat due to their ability to enter the food chain, with harmful consequences for living organisms. The riskiness of these particles is also linked to the release of other contaminants, such as heavy metals. Solute Carriers (SLCs) represent eminent examples of first-level targets of heavy metals due to their localization on the cell surface.

View Article and Find Full Text PDF

LAT1 (SLC7A5) catalyzes an antiport reaction of amino acids with specificity towards the essential ones. It is mainly expressed at the Blood Brain Barrier and placenta barriers, but it becomes over-expressed in virtually all human cancers even if originating from tissues with lower expression levels. The antiport reaction of LAT1 is crucial at the BBB since its inherited loss causes Autism Spectrum Disorder.

View Article and Find Full Text PDF

Fragment crystallizable gamma receptors (FcγRs) mediate various cellular responses with significant cardiovascular implications. They contribute to the anticancer activity of trastuzumab (TRZ), a recombinant humanized monoclonal antibody that interferes with human epidermal growth factor receptor 2 (HER2), thereby blocking its physiological function in cardiac cells. This is responsible for cardiac complications that hamper TRZ clinical application.

View Article and Find Full Text PDF

Carnitine is a vital molecule in human metabolism, prominently involved in fatty acid β-oxidation within mitochondria. Predominantly sourced from dietary intake, carnitine also derives from endogenous synthesis. This review delves into the complex network of carnitine transport and distribution, emphasizing its pivotal role in human fertility.

View Article and Find Full Text PDF

The carnitine/acylcarnitine carrier (CAC) is a crucial protein for cellular energy metabolism, facilitating the exchange of acylcarnitines and free carnitine across the mitochondrial membrane, thereby enabling fatty acid β-oxidation and oxidative phosphorylation (OXPHOS). Although CAC has not been crystallised, structural insights are derived from the mitochondrial ADP/ATP carrier (AAC) structures in both cytosolic and matrix conformations. These structures underpin a single binding centre-gated pore mechanism, a common feature among mitochondrial carrier (MC) family members.

View Article and Find Full Text PDF

The Organic Cation Transporter Novel 1 (OCTN1), also known as SLC22A4, is widely expressed in various human tissues, and involved in numerous physiological and pathological processes remains. It facilitates the transport of organic cations, zwitterions, with selectivity for positively charged solutes. Ergothioneine, an antioxidant compound, and acetylcholine (Ach) are among its substrates.

View Article and Find Full Text PDF

Human flavin adenine dinucleotide synthase (hFADS) is a bifunctional, multi-domain enzyme that exhibits both flavin mononucleotide adenylyltransferase and pyrophosphatase activities. Here we report the crystal structure of full-length hFADS2 and its C-terminal PAPS domain in complex with flavin adenine dinucleotide (FAD), and dissect the structural determinants underlying the contribution of each individual domain, within isoforms 1 and 2, to each of the two enzymatic activities. Structural and functional characterization performed on complete or truncated constructs confirmed that the C-terminal domain tightly binds FAD and catalyzes its synthesis, while the combination of the N-terminal molybdopterin-binding and KH domains is the minimal essential substructure required for the hydrolysis of FAD and other ADP-containing dinucleotides.

View Article and Find Full Text PDF

Inflammation is a physiological condition characterized by a complex interplay between different cells handled by metabolites and specific inflammatory-related molecules. In some pathological situations, inflammation persists underlying and worsening the pathological state. Over the years, two membrane transporters namely OCTN1 (SLC22A4) and OCTN2 (SLC22A5) have been shown to play specific roles in inflammation.

View Article and Find Full Text PDF

Multidrug resistance-associated protein 2 (MRP2/ABCC2) is a polyspecific efflux transporter of organic anions expressed in hepatocyte canalicular membranes. MRP2 dysfunction, in Dubin-Johnson syndrome or by off-target inhibition, for example by the uricosuric drug probenecid, elevates circulating bilirubin glucuronide and is a cause of jaundice. Here, we determine the cryo-EM structure of rat Mrp2 (rMrp2) in an autoinhibited state and in complex with probenecid.

View Article and Find Full Text PDF

Background: SLC38A2 is a ubiquitously expressed Na-dependent transporter specific for small and medium neutral amino acids. It is involved in human pathologies, such as type II diabetes and cancer. Despite its relevance in human physio-pathology, structure/function relationship studies and identification of ligands with regulatory roles are still in infancy.

View Article and Find Full Text PDF

Tripartite ATP-independent periplasmic (TRAP) transporters are secondary-active transporters that receive their substrates via a soluble-binding protein to move bioorganic acids across bacterial or archaeal cell membranes. Recent cryo-electron microscopy (cryo-EM) structures of TRAP transporters provide a broad framework to understand how they work, but the mechanistic details of transport are not yet defined. Here we report the cryo-EM structure of the -acetylneuraminate TRAP transporter (SiaQM) at 2.

View Article and Find Full Text PDF

The human SLC7A10 transporter, also known as ASC-1, catalyzes the transport of some neutral amino acids. It is expressed in astrocytes, neurons, and adipose tissues, playing roles in learning, memory processes, and lipid metabolism, thus being involved in neurological and metabolic pathologies. Structure/function studies on this transporter are still in their infancy.

View Article and Find Full Text PDF

The organic cation transporter 2 (OCT2) is pivotal in the renal elimination of several positively charged molecules. OCT2 mode of transport is profoundly influenced by the level of membrane cholesterol. The aim of this study was to investigate the effect of oxidized cholesterol on OCT2 transport activity in human embryonic kidney 293 cells stably transfected with OCT2 (OCT2-HEK293) and in primary renal proximal tubular epithelial cells (RPTEC).

View Article and Find Full Text PDF

Background: OCTN1 belongs to the SLC22 family, which includes transporters for cationic, zwitterionic, and anionic substrates. OCTN1 function and role in cells are still poorly understood. Not only cations, such as TEA, but also zwitterions, such as carnitine and ergothioneine, figure among transported molecules.

View Article and Find Full Text PDF

LAT1 (SLC7A5) is one of the most studied membrane transporters due to its relevance to physiology in supplying essential amino acids to brain and fetus, and to pathology being linked to nervous or embryo alterations; moreover, LAT1 over-expression is always associated with cancer development. Thus, LAT1 is exploited as a pro-drug vehicle and as a target for anti-cancer therapy. We here report the identification of a new substrate with pathophysiological implications, i.

View Article and Find Full Text PDF

Background: The carnitine/acylcarnitine carrier (CAC) represents the route of delivering acyl moieties to the mitochondrial matrix for accomplishing the fatty acid β-oxidation. The CAC has a couple of Cys residues (C136 and C155) most reactive toward ROS and redox signaling compounds such as GSH, NO, and HS. Among physiological compounds reacting with Cys, itaconate is produced during inflammation and represents the connection between oxidative metabolism and immune responses.

View Article and Find Full Text PDF

In bacteria and archaea, tripartite ATP-independent periplasmic (TRAP) transporters uptake essential nutrients. TRAP transporters receive their substrates via a secreted soluble substrate-binding protein. How a sodium ion-driven secondary active transporter is strictly coupled to a substrate-binding protein is poorly understood.

View Article and Find Full Text PDF

The large Amino Acid Transporter 1 (LAT1) is an interesting target in drug discovery since this transporter is overexpressed in several human cancers. Furthermore, due to its location in the blood-brain barrier (BBB), LAT1 is interesting for delivering pro-drugs to the brain. In this work, we focused on defining the transport cycle of LAT1 using an in silico approach.

View Article and Find Full Text PDF

The effect of mycotoxin patulin (4-hydroxy-4H-furo [3,2c] pyran-2 [6H] -one) on the mitochondrial carnitine/acylcarnitine carrier (CAC, SLC25A20) was investigated. Transport function was measured as [H]-carnitine/carnitine antiport in proteoliposomes reconstituted with the native protein extracted from rat liver mitochondria or with the recombinant CAC over-expressed in . Patulin (PAT) inhibited both the mitochondrial native and recombinant transporters.

View Article and Find Full Text PDF

Riboflavin is an essential water-soluble vitamin that needs to be provided through the diet because of the conversion into flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), important cofactors in hundreds of flavoenzymes. The adsorption and distribution of riboflavin is mediated by transmembrane transporters of the SLC52 family, namely RFVT1-3, whose mutations are mainly associated with two diseases, MADD and the Brown-Vialetto-Van Laere syndrome. Interest in RFVTs as pharmacological targets has increased in the last few years due to their overexpression in several cancer cells, which can be exploited both by blocking the uptake of riboflavin into the cancerous cells, and by performing cancer targeted delivery of drugs with a high affinity for RFVTs.

View Article and Find Full Text PDF

Mitochondrial Ca ions are crucial regulators of bioenergetics and cell death pathways. Mitochondrial Ca content and cytosolic Ca homeostasis strictly depend on Ca transporters. In recent decades, the major players responsible for mitochondrial Ca uptake and release have been identified, except the mitochondrial Ca /H exchanger (CHE).

View Article and Find Full Text PDF

The plasma membrane transporter xCT belongs to the SLC7 family and has the physiological role of mediating the exchange of glutamate and cystine across the cell plasma membrane, being crucial for redox control. The xCT protein forms a heterodimer with the ancillary protein CD98. Over the years, xCT became a hot pharmacological target due to the documented over-expression in virtually all human cancers, which rely on cystine availability for their progression.

View Article and Find Full Text PDF