An important question in drug discovery is how to overcome the significant challenge of high drug attrition rates due to lack of efficacy and safety. A missing link in the understanding of determinants for drug efficacy is the relation between drug-target binding kinetics and signal transduction, particularly in the physiological context of (multiple) endogenous ligands. We hypothesized that the kinetic binding parameters of both drug and endogenous ligand play a crucial role in determining cellular responses, using the NK1 receptor as a model system.
View Article and Find Full Text PDFA considerable number of approved drugs show non-equilibrium binding characteristics, emphasizing the potential role of drug residence times for in vivo efficacy. Therefore, a detailed understanding of the kinetics of association and dissociation of a target-ligand complex might provide crucial insight into the molecular mechanism-of-action of a compound. This deeper understanding will help to improve decision making in drug discovery, thus leading to a better selection of interesting compounds to be profiled further.
View Article and Find Full Text PDFCurrently, drug discovery focusses only on quantifying pharmacological parameters, sometimes including binding kinetics, of drug candidates. For a complete understanding of a drug's desired binding kinetics, the kinetics of both the target and its endogenous ligands should be considered. This is because the release and binding kinetics of endogenous ligands in addition to receptor internalization rates are significant contributors to drug-target interactions.
View Article and Find Full Text PDFIntroduction: Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target binding kinetics in drug discovery. A meaningful application of in vitro drug-target binding kinetics in drug discovery requires insight into the relation between in vivo drug effect and in vitro measured drug-target binding kinetics.
View Article and Find Full Text PDFThe chemokine receptor CCR2 is a G protein-coupled receptor that is activated primarily by the endogenous CC chemokine ligand 2 (CCL2). Many different small-molecule antagonists have been developed to inhibit this receptor, as it is involved in a variety of diseases characterized by chronic inflammation. Unfortunately, all these antagonists lack clinical efficacy, and therefore a better understanding of their mechanism of action is warranted.
View Article and Find Full Text PDF