Publications by authors named "India N Bland"

CRISPR/Cas9 gene editing represents an exciting avenue to study genes of unknown function and can be combined with genetically encoded tools such as fluorescent proteins, channelrhodopsins, DREADDs, and various biosensors to more deeply probe the function of these genes in different cell types. However, current strategies to also manipulate or visualize edited cells are challenging due to the large size of Cas9 proteins and the limited packaging capacity of adeno-associated viruses (AAVs). To overcome these constraints, we developed an alternative gene editing strategy using a single AAV vector and mouse lines that express Cre-dependent Cas9 to achieve efficient cell-type specific editing across the nervous system.

View Article and Find Full Text PDF

Gene manipulation strategies using germline knockout, conditional knockout, and more recently CRISPR/Cas9 are crucial tools for advancing our understanding of the nervous system. However, traditional gene knockout approaches can be costly and time consuming, may lack cell-type specificity, and can induce germline recombination. Viral gene editing presents and an exciting alternative to more rapidly study genes of unknown function; however, current strategies to also manipulate or visualize edited cells are challenging due to the large size of Cas9 proteins and the limited packaging capacity of adeno-associated viruses (AAVs).

View Article and Find Full Text PDF