Curr Pharm Biotechnol
July 2024
Osteoporosis, one of the most prevalent bone illnesses, majorly affects postmenopausal women and men over 50 years of age. Osteoporosis is associated with an increased susceptibility to fragility fractures and can result in persistent pain and significant impairment in affected individuals. The primary method for diagnosing osteoporosis involves the assessment of bone mineral density (BMD) through the utilisation of dual energy x-ray absorptiometry (DEXA).
View Article and Find Full Text PDFHydrogels are three-dimensional network structures of hydrophilic polymers, which have the capacity to take up an enormous amount of fluid/water. Carboxymethyl cellulose (CMC) is a commercially available cellulose derivative that can be used for biomedical applications due to its biocompatibility. It has been used as a major component to fabricate hydrogels because of its superabsorbent nature.
View Article and Find Full Text PDFInjectable calcium phosphate cement is a promising biomaterial for hard tissue repair due to its osteoinductivity, biocompatibility properties, and its use to correct defect areas involving narrow cavities with limited accessibility by the minimally invasive technique. Microwave-synthesized hydroxyapatite (HA) was used for the preparation of cement. In recent years, both magnesium and strontium calcium phosphate cements have exhibited rapid setting, improved mechanical strength, and a good resorption rate.
View Article and Find Full Text PDFThe present study involves the development of citric acid-cross-linked carboxymethyl cellulose (C3CA) scaffolds by a freeze-drying process. Scaffolds were fabricated at different freezing temperatures of -20, -40, or -80 °C to investigate the influence of scaffold pore size on bone regeneration. All three scaffolds were porous in structure, and the pore size was measured to be 74 ± 4, 55 ± 6, and 46 ± 5 μm for -20, -40, and -80 °C scaffolds.
View Article and Find Full Text PDFArtificial skin substitute made of polymeric films are of great demand in the field of skin tissue engineering. We report here the fabrication of carboxymethyl cellulose (CMC) and poly(ethylene glycol) (PEG) blend films by solution casting method for wound healing applications. The physicochemical characteristics and the thermal stability of the films were analyzed.
View Article and Find Full Text PDFCoating titanium implants with artificial extracellular matrices based on collagen and chondroitin sulfate (CS) has been shown to enhance bone remodelling and de novo bone formation in vivo. The aim of this study was to evaluate the effect of estrogen deficiency and hormone replacement therapy (HRT) on the osseointegration of CS-modified Ti implants. 30 adult female, ovariectomized Wistar rats were fed either with an ethinyl-estradiol-rich diet (E) to simulate a clinical relevant HRT or with a genistein-rich diet (G) to test an alternative therapy based on nutritionally relevant phytoestrogens.
View Article and Find Full Text PDFBiological materials are often based on simple constituents and grown by the principle of self-assembly under ambient conditions. In particular, biomineralization approaches exploit efficient pathways of inorganic material synthesis. There is still a large gap between the complexity of natural systems and the practical utilization of bioinspired formation mechanisms.
View Article and Find Full Text PDFThis work describes a systematic study of gelatin-sepiolite structural bionanocomposites to show how the renaturation level of the biopolymer is highly dependent on the type of mineral particle used. The aim of the work is to prove that chemical interactions between both components (hydrogen and covalent bonding) determine the organization level of the biopolymer which in turn results in drastic differences in the elastic properties of the prepared bionanocomposites. To assess this, several systematic modifications were introduced into the silicate structure and surface, generating four derivatives.
View Article and Find Full Text PDFA series of biocomposite materials was successfully prepared by reinforcing advanced calcium phosphate cement with hydroxyapatite fibrous and elongated plate-like particles. Powder X-ray diffraction showed that ball-milled biocomposite precursors (dicalcium and tetracalcium phosphates) entirely transform to a single phase hydroxyapatite end product within 7 h at 37 °C. Electron microscopy showed that the resultant biocomposites are constituted of nanoscaled cement particles intimately associated with the reinforcement crystals.
View Article and Find Full Text PDFBone regeneration is controlled by a variety of biochemical, biomechanical, cellular, and hormonal mechanisms. In particular, physical properties of the substrate such as stiffness and architecture highly influence the proliferation and differentiation of cells. The aim of this work is to understand the influence of scaffold stiffness and cell seeding densities on the formation of tissue by osteoblast cells within polyether urethane scaffolds containing pores of different sizes.
View Article and Find Full Text PDFStrontium ranelate (SrR) is a relatively new treatment for osteoporosis. In this study we investigated its potential impact on human bone material quality in transiliac bone biopsies from postmenopausal osteoporotic women treated 3 years with calcium and vitamin D plus either 2 g SrR per day or placebo. Bone mineralization density distribution (BMDD), strontium (Sr) concentration, collagen cross-link ratio, and indentation modulus were analyzed by quantitative backscattered electron imaging, electron-induced X-ray fluorescence analysis, synchrotron radiation induced micro X-ray fluorescence elemental mapping, Fourier transform infrared imaging, and nanoindentation, respectively.
View Article and Find Full Text PDFBone healing is known to occur through the successive formation and resorption of various tissues with different structural and mechanical properties. To get a better insight into this sequence of events, we used environmental scanning electron microscopy (ESEM) together with scanning small-angle X-ray scattering (sSAXS) to reveal the size and orientation of bone mineral particles within the regenerating callus tissues at different healing stages (2, 3, 6, and 9 weeks). Sections of 200 µm were cut from embedded blocks of midshaft tibial samples in a sheep osteotomy model with an external fixator.
View Article and Find Full Text PDFIn this study, we report a hybrid organic-inorganic TEOS-MTES (tetraethylorthosilicate-methyltriethoxysilane) sol-gel-made coating as a potential solution to improve the in vivo performance of AISI 316L stainless steel, which is used as permanent bone implant material. These coatings act as barriers for ion migration, promoting the bioactivity of the implant surface. The addition of SiO(2) colloidal particles to the TEOS-MTES sol (10 or 30 mol.
View Article and Find Full Text PDFNeurofibromatosis type 1 (NF1) is a prevalent genetic disorder primarily characterized by the formation of neurofibromas, café-au-lait spots and freckling. Skeletal abnormalities such as short stature or bowing/pseudarthrosis of the tibia are relatively common. To investigate the role of the neurofibromin in skeletal development, we crossed Nf1flox mice with Prx1Cre mice to inactivate Nf1 in undifferentiated mesenchymal cells of the developing limbs.
View Article and Find Full Text PDF