Publications by authors named "Inchan Kwon"

Therapeutic proteins, pivotal for treating diverse human diseases due to their biocompatibility and high selectivity, often face challenges such as rapid serum clearance, enzymatic degradation, and immune responses. To address these issues and enable prolonged therapeutic efficacy, techniques to extend the serum half-life of therapeutic proteins are crucial. The AlbuCatcher, a conjugate of human serum albumin (HSA) and SpyCatcher, was proposed as a general technique to extend the serum half-life of diverse therapeutic proteins.

View Article and Find Full Text PDF

Rare earth elements (REEs), including those in the lanthanide series, are crucial components essential for clean energy transitions, but they originate from geographically limited regions. Exploiting new and diverse supply sources is vital to facilitating a clean energy future. Hence, we explored the recovery of REEs from coal fly ash (FA), a complex, low-grade industrial feedstock that is currently underutilized (leachate concentrations of REEs in FA are < 0.

View Article and Find Full Text PDF

Achieving efficient and site-specific conjugation of therapeutic protein to polymer is crucial to augment their applicability in the realms of biomedicine by improving their stability and enzymatic activity. In this study, we exploited tetrazine bioorthogonal chemistry to achieve the site-specific conjugation of bottlebrush polymers to urate oxidase (UOX), a therapeutic protein for gout treatment. An azido-functionalized zwitterionic bottlebrush polymer (N-ZBP) using a "" strategy involving RAFT and ATRP methods was synthesized, and a -cyclooctene (TCO) moiety was introduced at the polymer end through the strain-promoted azide-alkyne click (SPAAC) reaction.

View Article and Find Full Text PDF

Background: The use of single-chain variable fragments (scFvs) for treating human diseases, such as cancer and immune system disorders, has attracted significant attention. However, a critical drawback of scFv is its extremely short serum half-life, which limits its therapeutic potential. Thus, there is a critical need to prolong the serum half-life of the scFv for clinical applications.

View Article and Find Full Text PDF

Genome-scale metabolic model (GEM) can be used to simulate cellular metabolic phenotypes under various environmental or genetic conditions. This study utilized the GEM to observe the internal metabolic fluxes of recombinant producing gamma-aminobutyric acid (GABA). Recombinant was cultivated in a fermenter under three conditions: pH 7, pH 5, and additional succinic acids.

View Article and Find Full Text PDF

Background: Exogenously providing engineered Uox with enhanced half-life is one of the important urate-lowering treatments for gout. The potential of PAT101, a recombinant human albumin (rHA)-conjugated variant, was evaluated and compared as a novel gout treatment through various in vivo studies with PAT101 and competing drugs.

Methods: PAT101 was produced by site-specific conjugation of rHA and Aspergillus flavus Uox (AfUox-rHA) through clickable non-natural amino acid (frTet) and Inverse electron demand Diels-Alder (IEDDA) reaction.

View Article and Find Full Text PDF

The pressing challenge of cancer's high mortality and invasiveness demands improved therapeutic approaches. Targeting the nutrient dependencies within cancer cells has emerged as a promising approach. This study is dedicated to demonstrating the potential of arginine depletion for cancer treatment.

View Article and Find Full Text PDF

It is challenging to capture carbon dioxide (CO), a major greenhouse gas in the atmosphere, due to its high chemical stability. One potential practical solution to eliminate CO is to convert CO into formate using hydrogen (H) (CO hydrogenation), which can be accomplished with inexpensive hydrogen from sustainable sources. While industrial flue gas could provide an adequate source of hydrogen, a suitable catalyst is needed that can tolerate other gas components, such as carbon monoxide (CO) and oxygen (O), potential inhibitors.

View Article and Find Full Text PDF

Hydrogen gas obtained from cheap or sustainable sources has been investigated as an alternative to fossil fuels. By using hydrogenase (Hase) and formate dehydrogenase (FDH), H and CO gases can be converted to formate, which can be conveniently stored and transported. However, developing an enzymatic process that converts H and CO obtained from cheap sources into formate is challenging because even a very small amount of O included in the cheap sources damages most Hases and FDHs.

View Article and Find Full Text PDF

Single-chain variable fragments (scFvs) have been recognized as promising agents in cancer therapy. However, short serum half-life of scFvs often limits clinical application. Fusion to albumin affibody (ABD) is an effective and convenient half-life extension strategy.

View Article and Find Full Text PDF

3-arylpropiolonitriles (APN) are promising alternatives to maleimide for chemo-selective thiol conjugation, because the reaction product has a remarkably hydrolytic stability compared with that of thiol-maleimide reactions in vitro. However, whether cysteine modification with APN enhances stability in vivo compared to thiol-maleimide reactions remains unclear, probably due to the too short in vivo serum half-life of a protein to observe significant cleavage of thiol-maleimide/-APN reaction products. The conjugation of human serum albumin (HSA) to a therapeutic protein reportedly prolongs the in vivo serum half-life.

View Article and Find Full Text PDF

Urate oxidase derived from has been investigated as a treatment for tumor lysis syndrome, hyperuricemia, and gout. However, its long-term use is limited owing to potential immunogenicity, low thermostability, and short circulation time in vivo. Recently, urate oxidase isolated from (AgUox) has been reported to be thermostable and less immunogenic than the -derived urate oxidase.

View Article and Find Full Text PDF

Human serum albumin (HSA) has been used to extend the serum half-life of therapeutic proteins owing to its exceptionally long serum half-life via the neonatal Fc receptor (FcRn)-mediated recycling mechanism. In most cases, only one HSA molecule was conjugated to a therapeutic protein, leading to a limited extension of the serum half-life. In this study, we hypothesized that conjugation of multiple HSA molecules to a therapeutic protein significantly further extends the serum half-life via multivalent HSA-FcRn interactions.

View Article and Find Full Text PDF

Glucagon-like peptide-1 (GLP-1) is a peptide hormone with tremendous therapeutic potential for treating type 2 diabetes mellitus. However, the short half-life of its native form is a significant drawback. We previously prolonged the plasma half-life of GLP-1 via site-specific conjugation of human serum albumin (HSA) at position 16 of recombinant GLP-1 using site-specific incorporation of p-azido-phenylalanine (AzF) and strain-promoted azide-alkyne cycloaddition (SPAAC).

View Article and Find Full Text PDF

An inverse-electron-demand Diels-Alder (IEDDA) reaction using genetically encoded tetrazine variants enables rapid bioconjugation for diverse applications and . However, bioconjugation using genetically encoded tetrazine variants is challenging, because the IEDDA coupling reaction competes with rapid elimination of reaction partners . Here, we tested the hypothesis that a genetically encoded phenylalanine analogue containing a hydrogen-substituted tetrazine (frTet) would increase the IEDDA reaction rate, thereby allowing for successful bioconjugation .

View Article and Find Full Text PDF

Enzyme immobilization is very important for diverse enzyme applications. Particularly, there is a growing need for coimmobilization of multiple enzymes for biosensing and synthetic applications. However, it is still challenging to coimmobilize two enzymes with desirable features, including high immobilization yield, retention of enzymatic activity, and low leaching.

View Article and Find Full Text PDF

Therapeutic proteins are attractive candidates for the treatment of human diseases. However, their short half-life often limits their clinical application. To overcome this problem, injectable hydrogels have been developed as depots for controlled release of therapeutic proteins, but these systems have not yet achieved the desired extended, sustained drug release profile.

View Article and Find Full Text PDF

Conjugation of serum albumin or one of its ligands (such as fatty acid) has been an effective strategy to prolong the serum half-lives of drugs via neonatal Fc receptor (FcRn)-mediated recycling of albumin. So far, fatty acid (FA) has been effective in prolonging the serum half-lives for therapeutic peptides and small proteins, but not for large therapeutic proteins. Very recently, it was reported a large protein conjugated to FA competes with the binding of FcRn with serum albumin, leading to limited serum half-life extension, because primary FA binding sites in serum albumin partially overlap with FcRn binding sites.

View Article and Find Full Text PDF

The number of therapeutic peptides for human treatment is growing rapidly. However, their development faces two major issues: the poor yield of large peptides from conventional solid-phase synthesis, and the intrinsically short serum half-life of peptides. To address these issues, we investigated a platform for the production of a recombinant therapeutic peptide with an extended serum half-life involving the site-specific conjugation of human serum albumin (HSA).

View Article and Find Full Text PDF

Mussel adhesive proteins (MAPs) have great potential as bioglues, particularly in wet conditions. Although in vivo residue-specific incorporation of 3,4-dihydroxyphenylalanine (Dopa) in tyrosine-auxotrophic Escherichia coli cells allows for production of Dopa-incorporated bioengineered MAPs (dMAPs), the low production yield hinders the practical application of dMAPs. This low production yield of dMAPs is due to low translational activity of a noncanonical amino acid, Dopa, in E.

View Article and Find Full Text PDF

Therapeutic proteins are indispensable for treatment of various human diseases. However, intrinsic short serum half-lives of proteins are still big hurdles for developing new therapeutic proteins or expanding applications of existing ones. Urate oxidase (Uox) is a therapeutic protein clinically used for treatment of hyperuricemia.

View Article and Find Full Text PDF

Hypoxia, resulting from the imbalance between oxygen supply and consumption is a critical component of the tumor microenvironment. It has a paramount impact on cancer growth, metastasis and has long been known as a major obstacle for cancer therapy. However, none of the clinically approved anticancer therapeutics currently available for human use directly tackles this problem.

View Article and Find Full Text PDF

Therapeutic proteins are indispensable in the treatment of various human diseases. Despite the many benefits of therapeutic proteins, they also exhibit diverse side effects. Therefore, reducing unwanted side effects of therapeutic proteins as well as enhancing their therapeutic efficacy are very important in developing therapeutic proteins.

View Article and Find Full Text PDF

Ophthalmic formulations have classically been administered to eyes through eye drops, which have poor delivery efficiency and require frequent instillation. As a means of overcoming these drawbacks, ocular-drug delivery via therapeutic contact lenses has caused great interest. A simple way to prepare therapeutic contact lenses is to immerse lenses in concentrated drug solution.

View Article and Find Full Text PDF

Human serum albumin (HSA) has been investigated as a serum half-life extender of therapeutic proteins thanks to its unusually long serum half-life. However, in mice, the serum half-life of a HSA-conjugated protein was much shorter than that of HSA in humans, likely due to the species-dependent nature of albumin-FcRn interactions. Herein, we investigated species-dependent albumin-FcRn interactions using species-matched albumin (mouse serum albumin) and species-mismatched albumin (HSA) in non-transgenic mice.

View Article and Find Full Text PDF