Publications by authors named "Inbal Israely"

Dendritic spines are highly dynamic structures whose structural and functional fluctuations depend on multiple factors. Changes in synaptic strength are not limited to synapses directly involved in specific activity patterns. Unstimulated clusters of neighboring spines in and around the site of stimulation can also undergo alterations in strength.

View Article and Find Full Text PDF

Learning is thought to involve physiological and structural changes at individual synapses. Synaptic plasticity has predominantly been studied using regular stimulation patterns, but neuronal activity in the brain normally follows a Poisson distribution. We used two-photon imaging and glutamate uncaging to investigate the structural plasticity of single dendritic spines using naturalistic activation patterns sampled from a Poisson distribution.

View Article and Find Full Text PDF

Live fluorescence imaging has demonstrated the dynamic nature of dendritic spines, with changes in shape occurring both during development and in response to activity. The structure of a dendritic spine correlates with its functional efficacy. Learning and memory studies have shown that a great deal of the information stored by a neuron is contained in the synapses.

View Article and Find Full Text PDF

Corticostriatal connectivity is central for many cognitive and motor processes, such as reinforcement or action initiation and invigoration. The cortical input to the striatum arises from two main cortical populations: intratelencephalic (IT) and pyramidal tract (PT) neurons. We report a previously unknown excitatory circuit, supported by a polysynaptic motif from PT neurons to cholinergic interneurons (ChIs) to glutamate-releasing axons, which runs in parallel to the canonical monosynaptic corticostriatal connection.

View Article and Find Full Text PDF

Detecting morphological changes of dendritic spines in time-lapse microscopy images and correlating them with functional properties such as memory and learning, are fundamental and challenging problems in neurobiology research. In this paper, we propose an algorithm for dendritic spine detection in time series. The proposed approach initially performs spine detection at each time point and improves the accuracy by exploiting the information obtained from tracking of individual spines over time.

View Article and Find Full Text PDF

Information is encoded in neural networks through changes in synaptic weights. Synaptic learning rules involve a combination of rapid Hebbian plasticity and slower homeostatic synaptic plasticity that regulates neuronal activity through global synaptic scaling. Hebbian and homeostatic plasticity have been extensively investigated, whereas much less is known about their interaction.

View Article and Find Full Text PDF

Background: Neuronal morphology and function are highly coupled. In particular, dendritic spine morphology is strongly governed by the incoming neuronal activity. The first step towards understanding the structure-function relationships is to classify spine shapes into the main spine types suggested in the literature.

View Article and Find Full Text PDF

Connections between neurons can undergo long-lasting changes in synaptic strength correlating with changes in structure. These events require the synthesis of new proteins, the availability of which can lead to cooperative and competitive interactions between synapses for the expression of plasticity. These processes can occur over limited spatial distances and temporal periods, defining dendritic regions over which activity may be integrated and could lead to the physical rewiring of synapses into functional groups.

View Article and Find Full Text PDF

Neuronal circuits modify their response to synaptic inputs in an experience-dependent fashion. Increases in synaptic weights are accompanied by structural modifications, and activity dependent, long lasting growth of dendritic spines requires new protein synthesis. When multiple spines are potentiated within a dendritic domain, they show dynamic structural plasticity changes, indicating that spines can undergo bidirectional physical modifications.

View Article and Find Full Text PDF

The late-phase of long-term potentiation (L-LTP), the cellular correlate of long-term memory, induced at some synapses facilitates L-LTP expression at other synapses receiving stimulation too weak to induce L-LTP by itself. Using glutamate uncaging and two-photon imaging, we demonstrate that the efficacy of this facilitation decreases with increasing time between stimulations, increasing distance between stimulated spines and with the spines being on different dendritic branches. Paradoxically, stimulated spines compete for L-LTP expression if stimulated too closely together in time.

View Article and Find Full Text PDF

The maintenance of spine and synapse number during development is critical for neuronal circuit formation and function. Here we show that delta-catenin, a component of the cadherin-catenin cell adhesion complex, regulates spine and synapse morphogenesis during development. Genetic ablation or acute knockdown of delta-catenin leads to increases in spine and synapse density, accompanied by a decrease in tetrodotoxin induced spine plasticity.

View Article and Find Full Text PDF

The LAP [leucine-rich and postsynaptic density-95/Discs large/zona occludens-1 (PDZ)] protein erbin and delta-catenin, a component of the cadherin-catenin cell adhesion complex, are highly expressed in neurons and associate through PDZ-mediated interaction, but have incompletely characterized neuronal functions. We show that short hairpin RNA-mediated knockdown of erbin and knockdown or genetic ablation of delta-catenin severely impaired dendritic morphogenesis in hippocampal neurons. Simultaneous loss of erbin and delta-catenin does not enhance severity of this phenotype.

View Article and Find Full Text PDF

Delta-catenin belongs to the p120-catenin (p120(ctn)) protein family, which is characterized by ten, characteristically spaced Armadillo repeats that bind to the juxtamembrane segment of the classical cadherins. Delta-catenin is the only member of this family that is expressed specifically in neurons, where it binds to PDZ domain proteins in the post-synaptic compartment. As a component of both adherens and synaptic junctions, delta-catenin can link the adherens junction to the synapse and, thereby, coordinate synaptic input with changes in the adherens junction.

View Article and Find Full Text PDF

Delta-catenin (delta-catenin) is a neuron-specific catenin, which has been implicated in adhesion and dendritic branching. Moreover, deletions of delta-catenin correlate with the severity of mental retardation in Cri-du-Chat syndrome (CDCS), which may account for 1% of all mentally retarded individuals. Interestingly, delta-catenin was first identified through its interaction with Presenilin-1 (PS1), the molecule most frequently mutated in familial Alzheimer's Disease (FAD).

View Article and Find Full Text PDF