The COVID-19 outbreak was announced as a global pandemic by the World Health Organization in March 2020 and has affected a growing number of people in the past few months. In this context, advanced artificial intelligence techniques are brought to the forefront as a response to the ongoing fight toward reducing the impact of this global health crisis. In this study, potential use-cases of intelligent speech analysis for COVID-19 identification are being developed.
View Article and Find Full Text PDFPGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) regulates photosystem I cyclic electron flow which transiently activates non-photochemical quenching at the onset of light. Here, we show that a disulfide-based mechanism of PGRL1 regulated this process in vivo at the onset of low light levels. We found that PGRL1 regulation depended on active formation of key regulatory disulfides in the dark, and that PGR5 was required for this activity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2015
The regulatory mechanisms that use signals of low levels of reactive oxygen species (ROS) could be obscured by ROS produced under stress and thus are better investigated under homeostatic conditions. Previous studies showed that the chloroplastic atypical thioredoxin ACHT1 is oxidized by 2-Cys peroxiredoxin (2-Cys Prx) in Arabidopsis plants illuminated with growth light and in turn transmits a disulfide-based signal via yet unknown target proteins in a feedback regulation of photosynthesis. Here, we studied the role of a second chloroplastic paralog, ACHT4, in plants subjected to low light conditions.
View Article and Find Full Text PDFA chloroplast protein disulfide isomerase (PDI) was previously proposed to regulate translation of the unicellular green alga Chlamydomonas reinhardtii chloroplast psbA mRNA, encoding the D1 protein, in response to light. Here we show that AtPDI6, one of 13 Arabidopsis thaliana PDI genes, also plays a role in the chloroplast. We found that AtPDI6 is targeted and localized to the chloroplast.
View Article and Find Full Text PDFThe transition from dark to light involves marked changes in the redox reactions of photosynthetic electron transport and in chloroplast stromal enzyme activity even under mild light and growth conditions. Thus, it is not surprising that redox regulation is used to dynamically adjust and coordinate the stromal and thylakoid compartments. While oxidation of regulatory proteins is necessary for the regulation, the identity and the mechanism of action of the oxidizing pathway are still unresolved.
View Article and Find Full Text PDFThe reduction and the formation of regulatory disulfide bonds serve as a key signaling element in chloroplasts. Members of the thioredoxin (Trx) superfamily of oxidoreductases play a major role in these processes. We have characterized a small family of plant-specific Trxs in Arabidopsis (Arabidopsis thaliana) that are rich in cysteine and histidine residues and are typified by a variable noncanonical redox active site.
View Article and Find Full Text PDFRB60 is an atypical protein disulfide isomerase (PDI) that functions as a member of a redox regulatory protein complex controlling translation in the chloroplast of Chlamydomonas reinhardtii, but also contains a C-terminal endoplasmic reticulum (ER) retention signal, -KDEL. Here, we show by fluorescence microscopy that RB60 resides in the chloroplast but also outside of the chloroplast colocalized with BiP, an ER marker protein. RB60 accumulates in microsomes that exhibit a typical ER magnesium-shift, and cotranslationally translocates into ER microsomes.
View Article and Find Full Text PDF