The dissociative chemisorption of CH4 on Pt(111) was studied using quantum state-resolved methods at a surface temperature (T(s)) of 150 K where the nascent reaction products CH3(ads) and H(ads) are stable and accumulate on the surface. Most previous experimental studies of methane chemisorption on transition metal surfaces report only the initial sticking coefficients S0 on a clean surface. Reflection absorption infrared spectroscopy (RAIRS), used here for state resolved reactivity measurements, enables us to monitor the CH3(ads) uptake during molecular beam deposition as a function of incident translational energy (E(t)) and vibrational state (ν3 anti-symmetric C-H stretch of CH4) to obtain the initial sticking probability S0, the coverage dependence of the sticking probability S(θ) and the CH3(ads) saturation coverage θ(sat).
View Article and Find Full Text PDFWe report gas-phase electronic structure calculations on helical peptides that act as scaffolds for imidazole-based hydrogen-bonding networks (proton wires). We have modeled various 21-residue polyalanine peptides substituted at regular intervals with histidines (imidazole-bearing amino acids), using a hybrid approach with a semiempirical method (AM1) for peptide scaffolds and density functional theory (B3LYP) for proton wires. We have computed energy landscapes including barriers for Grotthuss-shuttling-type proton motions though wires supported on 3(10)-, α- and π-helical structures, showing the 3(10)- and α-helices to be attractive targets in terms of high proton affinities, low Grotthuss shuttling barriers, and high stabilities.
View Article and Find Full Text PDF