Bispecific agents targeting tumor-cell surface antigens and activating receptors on T lymphocytes are being developed for solid tumors. Effective and safe strategies depend on target specificity and at least relative tumor-tissue confinement of T-cell activation. Novel evidence suggests that constructs targeting HER2 on tumor cells with the aim of providing costimulation (signal-2) to T lymphocytes via CD137 (4-1BB) are safe and can meaningfully invigorate antitumor responses in a proportion of patients.
View Article and Find Full Text PDFBackground: Immunodeficient mice engrafted with peripheral blood mononuclear cells (PBMCs) are models to study new cancer immunotherapy agents. However, this approach is associated with xenograft-versus-host disease (xGVHD), which starts early after PBMC transfer and limits the duration and interpretation of experiments. Here, we explore different approaches to overcome xGVHD and better support the development of cancer immunotherapies.
View Article and Find Full Text PDFBiomarkers for cancer immunotherapy are an unmet medical need. The group of Daniela Thommen at the NKI recently reported on novel methodologies based on short-term cultures of patient-derived tumor fragments whose cytokine concentrations in the supernatants and activation markers on infiltrating T cells were associated with clinical response to PD-1 blockade. We set up a similar culture technology with tumor-derived fragments using mouse tumors transplanted into syngeneic immunocompetent mice to test an agonist anti-CD137 mAb and its combinations with anti-PD-1 and/or anti-TGF-β.
View Article and Find Full Text PDFPurpose: Patients with cancer frequently undergo radiotherapy in their clinical management with unintended irradiation of blood vessels and copiously irrigated organs in which polymorphonuclear leukocytes circulate. Following the observation that such low doses of ionizing radiation are able to induce neutrophils to extrude neutrophil extracellular traps (NET), we have investigated the mechanisms, consequences, and occurrence of such phenomena in patients undergoing radiotherapy.
Experimental Design: NETosis was analyzed in cultures of neutrophils isolated from healthy donors, patients with cancer, and cancer-bearing mice under confocal microscopy.
Bispecific T-cell engagers and chimeric antigen receptor T cells share the problem of eliciting acute systemic inflammation episodes known as cytokine release syndrome. Knowledge on the sequential waves of cytokines that can be neutralized with clinically available agents is crucial to prevent or treat this condition without jeopardizing the antitumor therapeutic outcome. See related article by Leclercq-Cohen et al.
View Article and Find Full Text PDFIntratumoral immunotherapy strategies for cancer based on interleukin-12 (IL-12)-encoding cDNA and mRNA are under clinical development in combination with anti-PD-(L)1 monoclonal antibodies. To make the most of these approaches, we have constructed chimeric mRNAs encoding single-chain IL-12 fused to single-chain fragment variable (scFv) antibodies that bind to transforming growth factor β (TGF-β) and CD137 (4-1BB). Several neutralizing TGF-β agents and CD137 agonists are also undergoing early-phase clinical trials.
View Article and Find Full Text PDFCD137 (4-1BB) is a member of the TNFR family that mediates potent T cell costimulatory signals upon ligation by CD137L or agonist monoclonal antibodies (mAbs). CD137 agonists attain immunotherapeutic antitumor effects in cancer mouse models, and multiple agents of this kind are undergoing clinical trials. We show that cIAP1 and cIAP2 are physically associated with the CD137 signaling complex.
View Article and Find Full Text PDFIn cancer pathogenesis, soluble mediators are responsible for a type of inflammation that favors the progression of tumors. The mechanisms chiefly involve changes in the cellular composition of the tumor tissue stroma and in the functional modulation of myeloid and lymphoid leukocytes. Active immunosuppression, proangiogenesis, changes in leukocyte traffic, extracellular matrix remodeling, and alterations in tumor-antigen presentation are the main mechanisms linked to the inflammation that fosters tumor growth and metastasis.
View Article and Find Full Text PDFInterleukin-12 (IL-12) gene transfer enhances the therapeutic potency of adoptive T cell therapies. We previously reported that transient engineering of tumor-specific CD8 T cells with IL-12 mRNA enhanced their systemic therapeutic efficacy when delivered intratumorally. Here, we mix T cells engineered with mRNAs to express either single-chain IL-12 (scIL-12) or an IL-18 decoy-resistant variant (DRIL18) that is not functionally hampered by IL-18 binding protein (IL-18BP).
View Article and Find Full Text PDFThe human tumor microenvironment requires use of high-dimensional single-cell tools to uncover its cellular complexity and functional variety. For decades, flow cytometry has been the technology of choice to explore immune cell diversity in different pathological contexts. Recently, a new format for flow cytometry - termed mass cytometry - has been developed.
View Article and Find Full Text PDFUnlabelled: Interleukin-8 (CXCL8) produced in the tumor microenvironment correlates with poor response to checkpoint inhibitors and is known to chemoattract and activate immunosuppressive myeloid leukocytes. In human cancer, IL8 mRNA levels correlate with IL1B and TNF transcripts. Both cytokines induced IL-8 functional expression from a broad variety of human cancer cell lines, primary colon carcinoma organoids, and fresh human tumor explants.
View Article and Find Full Text PDFOvarian cancer is often limited to the peritoneal cavity in the form of peritoneal carcinomatosis. Peritoneal spreading offers the opportunity for locoregional delivery of combinations of immunotherapy agents, maximizing bioavailability while potentially reducing systemic exposure and side effects. See related article by Orr et al.
View Article and Find Full Text PDFBackground: On the basis of efficacy in mouse tumor models, multiple CD137 (4-1BB) agonist agents are being preclinically and clinically developed. The costimulatory molecule CD137 is inducibly expressed as a transmembrane or as a soluble protein (sCD137). Moreover, the CD137 cytoplasmic signaling domain is a key part in approved chimeric antigen receptors (CARs).
View Article and Find Full Text PDFNeutrophil extracellular traps (NETs) are webs of extracellular nuclear DNA extruded by dying neutrophils infiltrating tissue. NETs constitute a defence mechanism to entrap and kill fungi and bacteria. Tumours induce the formation of NETs to the advantage of the malignancy via a variety of mechanisms shown in mouse models.
View Article and Find Full Text PDFOne of the most important mechanisms by which cancer fosters its own development is the generation of an immune microenvironment that inhibits or impairs antitumor immune responses. A cancer permissive immune microenvironment is present in a large proportion of the patients with cancer who do not respond to immunotherapy approaches intended to trigger preexisting antitumor immune responses, for instance, immune checkpoint blockade. High circulating levels of IL8 in patients with cancer quite accurately predict those who will not benefit from checkpoint-based immunotherapy.
View Article and Find Full Text PDFAnti-PD-(L)1 therapy represents a turning point in lung cancer immunotherapy, moving from previously ineffective enhancer strategies to immune checkpoints as standard first- and second-line therapies. This unprecedented success highlights the importance of mechanisms to escape immune attack, such PD-1/PD-L1 axis, and emphasize the importance to better understand the tumor immune microenvironment. Analyzing the specifics of immune response against lung tumor cells and how malignant cells progressively adapt to this pressure may help to understand which are the key aspects to guide the development of new therapeutic strategies.
View Article and Find Full Text PDFIt has been reported that a group of patients with advanced non-small cell lung cancer showed circulating T cells with a senescent phenotype, and an abundance of such cells is associated with worse clinical response to immune checkpoint inhibitors. This study encourages further analysis of the role of senescent T cells in resistance to lung cancer immunotherapy..
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICI) have revolutionized the management of advanced non-small cell lung cancer (NSCLC). However, most pivotal phase III trials systematically excluded patients with active brain metastases, precluding the generalization of the results. Although theoretically restricted from crossing the blood-brain barrier, the novel pharmacokinetic/pharmacodynamic profiles of anti-PD-1/PD-L1 drugs have prompted studies to evaluate their activity in patients with NSCLC with active central nervous system (CNS) involvement.
View Article and Find Full Text PDFHarnessing the immune system by blocking the programmed cell death protein 1 (PD-1) pathway has been a major breakthrough in non-small-cell lung cancer treatment. Nonetheless, many patients fail to respond to PD-1 inhibition. Using three syngeneic models, we demonstrate that short-term starvation synergizes with PD-1 blockade to inhibit lung cancer progression and metastasis.
View Article and Find Full Text PDF