Infection of Arabidopsis with avirulent and exposure to nitrogen dioxide (NO) both trigger hypersensitive cell death (HCD) that is characterized by the emission of bright blue-green (BG) autofluorescence under UV illumination. The aim of our current work was to identify the BG fluorescent molecules and scrutinize their biosynthesis, localization, and functions during the HCD. Compared with wild-type (WT) plants, the phenylpropanoid-deficient mutant developed normal HCD except for the absence of BG fluorescence.
View Article and Find Full Text PDFMetabolomics studies are becoming increasingly common for understanding how plant metabolism responds to changes in environmental conditions, genetic manipulations and treatments. Despite the recent advances in metabolomics workflow, the sample preparation process still limits the high-throughput analysis in large-scale studies. Here, we present a highly flexible robotic system that integrates liquid handling, sonication, centrifugation, solvent evaporation and sample transfer processed in 96-well plates to automatize the metabolite extraction from leaf samples.
View Article and Find Full Text PDFSesquiterpenes (STs) are secondary metabolites, which mediate biotic interactions between different organisms. Predicting the species-specific ST repertoires can contribute to deciphering the language of communication between organisms of the same or different species. High biochemical plasticity and catalytic promiscuity of sesquiterpene synthases (STSs), however, challenge the homology-based prediction of the STS functions.
View Article and Find Full Text PDFCommun Earth Environ
November 2020
Isoprene is emitted from the biosphere into the atmosphere, and may strengthen the defense mechanisms of plants against oxidative and thermal stress. Once in the atmosphere, isoprene is rapidly oxidized, either to isoprene-hydroxy-hydroperoxides (ISOPOOH) at low levels of nitrogen oxides, or to methyl vinyl ketone (MVK) and methacrolein at high levels. Here we combine uptake rates and deposition velocities that we obtained in laboratory experiments with observations in natural forests to show that 1,2-ISOPOOH deposits rapidly into poplar leaves.
View Article and Find Full Text PDFOver the last decades, post-illumination bursts (PIBs) of isoprene, acetaldehyde and green leaf volatiles (GLVs) following rapid light-to-dark transitions have been reported for a variety of different plant species. However, the mechanisms triggering their release still remain unclear. Here we measured PIBs of isoprene-emitting (IE) and isoprene non-emitting (NE) grey poplar plants grown under different climate scenarios (ambient control and three scenarios with elevated CO2 concentrations: elevated control, periodic heat and temperature stress, chronic heat and temperature stress, followed by recovery periods).
View Article and Find Full Text PDFPlasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition.
View Article and Find Full Text PDFInterspecific gene flow is common in oaks. In the Mediterranean, this process produced geographical differentiations and new species, which may have contributed to the diversification of the production of volatile terpenes in the oak species of this region. The endemic North African deciduous oak Quercus afares (Pomel) is considered to be a stabilized hybrid between the evergreen Quercus suber (L.
View Article and Find Full Text PDF• Depending on the atmospheric composition, isoprene emissions from plants can have a severe impact on air quality and regional climate. For the plant itself, isoprene can enhance stress tolerance and also interfere with the attraction of herbivores and parasitoids. • Here, we tested the growth performance and fitness of Populus × canescens in which isoprene emission had been knocked down by RNA interference technology (PcISPS-RNAi plants) for two growing seasons under outdoor conditions.
View Article and Find Full Text PDFBackground: Globally plants are the primary sink of atmospheric CO(2), but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds (BVOC).
View Article and Find Full Text PDFThe X-ray crystal structure of recombinant PcISPS (isoprene synthase from gray poplar hybrid Populus×canescens) has been determined at 2.7 Å resolution, and the structure of its complex with three Mg(2+) and the unreactive substrate analogue dimethylallyl-S-thiolodiphosphate has been determined at 2.8 Å resolution.
View Article and Find Full Text PDFIn plants, isoprene plays a dual role: (a) as thermo-protective agent proposed to prevent degradation of enzymes/membrane structures involved in photosynthesis, and (b) as reactive molecule reducing abiotic oxidative stress. The present work addresses the question whether suppression of isoprene emission interferes with genome wide transcription rates and metabolite fluxes in grey poplar (Populus x canescens) throughout the growing season. Gene expression and metabolite profiles of isoprene emitting wild type plants and RNAi-mediated non-isoprene emitting poplars were compared by using poplar Affymetrix microarrays and non-targeted FT-ICR-MS (Fourier transform ion cyclotron resonance mass spectrometry).
View Article and Find Full Text PDFDeoxy-xylulose phosphate synthase (DXS) catalyzes the first step of the methylerythritol phosphate (MEP) pathway and it might regulate the metabolic flux in plastidic isoprenoid biosynthesis. We developed a sensitive assay suitable for plant extracts that is based on the decarboxylation of labeled pyruvate (1-(13)C)-PYR and detection of (13)CO(2) by isotope ratio mass spectrometry. We tested our method investigating the DXS activity in poplar leaves.
View Article and Find Full Text PDFIn the present study, we combined transient temperature and light stress (sunfleck) and comparably analyzed photosynthetic gas exchange in Grey poplar which has been genetically modified in isoprene emission capacity. Overall, we demonstrate that for poplar leaves the ability to emit isoprene is crucial to maintain photosynthesis when exposed to sunflecks. Net CO2 assimilation and electron transport rates were strongly impaired in sunfleck-treated non-isoprene emitting poplars.
View Article and Find Full Text PDFBoreal forests emit a large amount of monoterpenes into the atmosphere. Traditionally these emissions are assumed to originate as evaporation from large storage pools. Thus, their diurnal cycle would depend mostly on temperature.
View Article and Find Full Text PDFThe aerobic formation of methane in plants has been reported previously, but has been questioned by a number of researchers. Recently, isotopic evidence demonstrated that ultraviolet irradiation and heating lead to photochemical or thermal aerobic methane formation mainly from plant pectin in the absence of microbial methane production. However, the origin of aerobic methane formation from plant material observed under low temperature and low-light/dark conditions is still unclear.
View Article and Find Full Text PDFIn many ecosystems drought cycles are common during the growing season but their impact on volatile monoterpene emissions is unclear. Therefore, we aimed to develop and evaluate a process-based modelling approach to explore the explanatory power of likely mechanisms. The biochemically based isoprene and monoterpene emission model SIM-BIM2 has been modified and linked to a canopy model and a soil water balance model.
View Article and Find Full Text PDFBlack poplar (Populus nigra L.) plants grown at 25 and 35 degrees C were subjected to drought stress to assess the combined impact of two consequences of global climate change--rising temperature and drought--on isoprene biosynthesis and emission. At both temperatures, photosynthesis was inhibited by moderate drought, but isoprene emission only decreased when drought was prolonged.
View Article and Find Full Text PDFIsoprene (2-methyl-1,3-butadiene) emission varies diurnally in different species. In poplar (Populus spp.), it has recently been shown that the gene encoding the synthesizing enzyme for isoprene, isoprene synthase (ISPS), displays diurnal variation in expression.
View Article and Find Full Text PDFTranscript levels of mRNA from 1-deoxy-D-xylulose 5-phosphate reductoisomerase (PcDXR), isoprene synthase (PcISPS), and phytoene synthase (PcPSY) showed strong seasonal variations in leaves of Grey poplar (Populus x canescens [Aiton] Sm.). These changes were dependent on the developmental stage and were strongly correlated to temperature and light.
View Article and Find Full Text PDFMonoterpene synthase activities were measured in current year and 1-year-old leaves of holm oak (Quercus ilex L.). The monoterpene synthase activities of the leaves strongly changed with leaf development and leaf age.
View Article and Find Full Text PDF