Publications by authors named "Ina Suresh"

Article Synopsis
  • Copy number variants (CNVs) are crucial for genetic variation and evolution, but their formation and effects are not well understood, particularly concerning local genomic sequences.
  • Research indicates that specific genomic features, like long terminal repeats (LTRs) and origins of DNA replication (ARS), influence the rapid formation and adaptive significance of CNVs during evolutionary processes in glutamine-limited environments.
  • Experimental evolution in engineered strains shows that altering these genomic elements affects CNV formation rates and fitness, with a significant portion of CNVs linked to a mechanism called Origin Dependent Inverted Repeat Amplification (ODIRA).
View Article and Find Full Text PDF

Cells respond to environmental and developmental stimuli by remodeling their transcriptomes through regulation of both mRNA transcription and mRNA decay. A central goal of biology is identifying the global set of regulatory relationships between factors that control mRNA production and degradation and their target transcripts and construct a predictive model of gene expression. Regulatory relationships are typically identified using transcriptome measurements and causal inference algorithms.

View Article and Find Full Text PDF

Large-scale genomic changes, including copy number variations (CNVs), are frequently observed in long-term evolution experiments (LTEEs). We have previously reported the detection of recurrent CNVs in Saccharomyces cerevisiae populations adapting to glutamine-limited conditions over hundreds of generations. Here, we present the whole-genome sequencing (WGS) assemblies of 7 LTEE strains and their ancestor.

View Article and Find Full Text PDF