Publications by authors named "Ina Strate"

Chondroitin sulfate (CS)/dermatan sulfate (DS) proteoglycans are abundant on the cell surface and in the extracellular matrix and have important functions in matrix structure, cell-matrix interaction and signaling. The DS epimerases 1 and 2, encoded by Dse and Dsel, respectively, convert CS to a CS/DS hybrid chain, which is structurally and conformationally richer than CS, favouring interaction with matrix proteins and growth factors. We recently showed that Xenopus Dse is essential for the migration of neural crest cells by allowing cell surface CS/DS proteoglycans to adhere to fibronectin.

View Article and Find Full Text PDF

Of all live births with congenital anomalies, approximately one-third exhibit deformities of the head and face. Most craniofacial disorders are associated with defects in a migratory stem and progenitor cell population, which is designated the neural crest (NC). Musculocontractural Ehlers-Danlos syndrome (MCEDS) is a heritable connective tissue disorder with distinct craniofacial features; this syndrome comprises multiple congenital malformations that are caused by dysfunction of dermatan sulfate (DS) biosynthetic enzymes, including DS epimerase-1 (DS-epi1; also known as DSE).

View Article and Find Full Text PDF

Glypicans are heparan sulphate proteoglycans (HSPGs) attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor, and interact with various extracellular growth factors and receptors. The Drosophila division abnormal delayed (dally) was the first glypican loss-of-function mutant described that displays disrupted cell divisions in the eye and morphological defects in the wing. In human, as in most vertebrates, six glypican-encoding genes have been identified (GPC1-6), and mutations in several glypican genes cause multiple malformations including congenital heart defects.

View Article and Find Full Text PDF

Single-cell migration is a key process in development, homeostasis, and disease. Nevertheless, the control over basic cellular mechanisms directing cells into motile behavior in vivo is largely unknown. Here, we report on the identification of a minimal set of parameters the regulation of which confers proper morphology and cell motility.

View Article and Find Full Text PDF

Rationale: The importance for Bmp signaling during embryonic stem cell differentiation into myocardial cells has been recognized. The question when and where Bmp signaling in vivo regulates myocardial differentiation has remained largely unanswered.

Objective: To identify when and where Bmp signaling regulates cardiogenic differentiation.

View Article and Find Full Text PDF

Retinoic acid (RA) is an important morphogen that regulates many biological processes, including the development of the central nervous system (CNS). Its synthesis from vitamin A (retinol) occurs in two steps, with the second reaction--catalyzed by retinal dehydrogenases (RALDHs)--long considered to be crucial for tissue-specific RA production in the embryo. We have recently identified the Xenopus homologue of retinol dehydrogenase 10 (XRDH10) that mediates the first step in RA synthesis from retinol to retinal.

View Article and Find Full Text PDF

We have recently identified 1110032E23Rik as a down-regulated target gene in Fgf receptor-signalling-deficient mouse embryoid bodies. Here, we present the expression pattern of this novel gene, designated Ened (Expressed in Nerve and Epithelium during Development), in mouse and Xenopus laevis embryos. Murine Ened transcripts were first seen at E9.

View Article and Find Full Text PDF

We found that the secreted serine protease xHtrA1, expressed in the early embryo and transcriptionally activated by FGF signals, promotes posterior development in mRNA-injected Xenopus embryos. xHtrA1 mRNA led to the induction of secondary tail-like structures, expansion of mesoderm, and formation of ectopic neurons in an FGF-dependent manner. An antisense morpholino oligonucleotide or a neutralizing antibody against xHtrA1 had the opposite effects.

View Article and Find Full Text PDF

Secreted proteins play a crucial role in intercellular communication during embryogenesis and in the adult. We recently described a novel method, designated as secretion cloning, that allows identifying extracellular proteins exclusively based on their ability to be secreted by transfected cells. In this paper, we present the results of a large-scale screening of more than 90,000 clones from three cDNA expression libraries constructed from early Xenopus embryos.

View Article and Find Full Text PDF