Publications by authors named "Ina Petry"

In the present study the feasibility of an in situ co-amorphisation of the basic drug carvedilol with the acidic co-former aspartic acid was investigated by immersion of film-coated tablets consisting of the two compounds in 0.1 MHCl. Tablets containing either crystalline carvedilol with aspartic acid or only crystalline carvedilol were prepared and coated with a gastro-resistant but water-permeable coating of a methacrylic acid - ethyl acrylate copolymer (Eudragit®L55).

View Article and Find Full Text PDF

The concept of controlled in situ amorphisation of drug/polymer mixtures has been introduced previously with indomethacin-Eudragit E and naproxen-Eudragit E compacts. In the present study, the feasibility of in situ amorphisation of a crystalline API with the low molecular weight coformer arginine was investigated. This research was based on a previous study, which showed that a high relative humidity (75% RH) may induce co-amorphisation of indomethacin with arginine.

View Article and Find Full Text PDF

The use of co-amorphous systems for solubility enhancement of poorly water-soluble drugs has recently gained interest in the field of pharmaceutical technology. However, undesired co-amorphisation of a drug may lead to an alteration of the performance of the drug product, e.g.

View Article and Find Full Text PDF

A promising approach to improve the solubility of poorly water-soluble drugs and to overcome the stability issues related to the plain amorphous form of the drugs, is the formulation of drugs as co-amorphous systems. Although polymer coatings have been proven very useful with regard to tablet stability and modifying drug release, there is little known on coating co-amorphous formulations. Hence, the aim of the present study was to investigate whether polymer coating of co-amorphous formulations is possible without inducing recrystallization.

View Article and Find Full Text PDF