Optimization of mesenchymal stem cells (MSC) culture conditions is of great importance for their more successful application in regenerative medicine. O(2) regulates various aspects of cellular biology and, in vivo, MSC are exposed to different O(2) concentrations spanning from very low tension in the bone marrow niche, to higher amounts in wounds. In our present work, we isolated mouse bone marrow stromal cells (BMSC) and showed that they contained a population meeting requirements for MSC definition.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) have the ability to differentiate towards various cell types of the adult organism and are a potential source of transplantable material in regenerative medicine. The entire process of conversion of iPSCs into terminally differentiated cells takes place in vitro and requires long periods of time. During in vitro culture, cells are exposed to environmental factors, which are capable of decreasing cellular performance and viability.
View Article and Find Full Text PDFGaucher's disease (GD) is caused by mutations in the GBA1 gene, which encodes acid-β-glucosidase, an enzyme involved in the degradation of complex sphingolipids. While the non-neuronopathic aspects of the disease can be treated with enzyme replacement therapy (ERT), the early-onset neuronopathic form currently lacks therapeutic options and is lethal. We have developed an induced pluripotent stem cell (iPSc) model of neuronopathic GD.
View Article and Find Full Text PDFDeletion of the p66(Shc) gene results in lean and healthy mice, retards aging, and protects from aging-associated diseases, raising the question of why p66(Shc) has been selected, and what is its physiological role. We have investigated survival and reproduction of p66(Shc)-/- mice in a population living in a large outdoor enclosure for a year, subjected to food competition and exposed to winter temperatures. Under these conditions, deletion of p66(Shc) was strongly counterselected.
View Article and Find Full Text PDFLongevity of a p66Shc knockout strain (ShcP) was previously attributed to increased stress resistance and altered mitochondria. Microarrays of ShcP tissues indicated alterations in insulin signaling. Consistent with this observation, ShcP mice were more insulin sensitive and glucose tolerant at organismal and tissue levels, as was a novel p66Shc knockout (ShcL).
View Article and Find Full Text PDFOxygen metabolism is thought to impact on aging through the formation of reactive oxygen species (ROS) that are supposed to damage biological molecules. The study of p66(Shc), a crucial regulator of ROS level involved in aging dysfunction, suggests that the incidence of degenerative disease and longevity are determined by a specific signaling function of ROS other than their unspecific damaging property.
View Article and Find Full Text PDFReactive oxygen species (ROS) and insulin signaling in the adipose tissue are critical determinants of aging and age-associated diseases. It is not clear, however, if they represent independent factors or they are mechanistically linked. We investigated the effects of ROS on insulin signaling using as model system the p66(Shc)-null mice.
View Article and Find Full Text PDFThe abundance of mitochondria is regulated by biogenesis and division. These processes are controlled by cellular factors, given that, for example, mitochondria have to replicate their DNA prior to cell division. However, the mechanisms that allow a synchronization of cell proliferation with mitochondrial genome replication are still obscure.
View Article and Find Full Text PDF