Publications by authors named "Ina Ambiel"

Immune cell phenotyping frequently detects lineage-unrelated receptors. Here, we report that surface receptors can be transferred from primary macrophages to CD4 T cells and identify the Fcγ receptor CD32 as driver and cargo of this trogocytotic transfer. Filamentous CD32 nanoprotrusions deposit distinct plasma membrane patches onto target T cells.

View Article and Find Full Text PDF

Resting CD4 T cells resist productive HIV-1 infection. The HIV-2/simian immunodeficiency virus protein viral accessory protein X (Vpx) renders these cells permissive to infection, presumably by alleviating blocks at cytoplasmic reverse transcription and subsequent nuclear import of reverse-transcription/pre-integration complexes (RTC/PICs). Here, spatial analyses using quantitative virus imaging techniques reveal that HIV-1 capsids containing RTC/PICs are readily imported into the nucleus, recruit the host dependency factor CPSF6, and translocate to nuclear speckles in resting CD4 T cells.

View Article and Find Full Text PDF

Combinations of direct-acting antivirals are needed to minimize drug resistance mutations and stably suppress replication of RNA viruses. Currently, there are limited therapeutic options against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and testing of a number of drug regimens has led to conflicting results. Here, we show that cobicistat, which is an FDA-approved drug booster that blocks the activity of the drug-metabolizing proteins cytochrome P450-3As (CYP3As) and P-glycoprotein (P-gp), inhibits SARS-CoV-2 replication.

View Article and Find Full Text PDF

SARS-CoV-2 variants of concern (VOCs) display enhanced transmissibility and resistance to antibody neutralization. Comparing the early 2020 isolate EU-1 to the VOCs Alpha, Beta, and Gamma in mice transgenic for human ACE2 reveals that VOCs induce a broadened scope of symptoms, expand systemic infection to the gastrointestinal tract, elicit the depletion of natural killer cells, and trigger variant-specific cytokine production patterns. Gamma infections result in accelerated disease progression associated with increased immune activation and inflammation.

View Article and Find Full Text PDF

Despite rapid development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant modalities to curb the pandemic by directly attacking the virus on a genetic level remain highly desirable and are urgently needed. Here we comprehensively illustrate the capacity of adeno-associated virus (AAV) vectors co-expressing a cocktail of three short hairpin RNAs (shRNAs; RNAi triggers) directed against the SARS-CoV-2 RdRp and N genes as versatile and effective antiviral agents. In cultured monkey cells and human gut organoids, our most potent vector, SAVIOR (SARS virus repressor), suppressed SARS-CoV-2 infection to background levels.

View Article and Find Full Text PDF

Rapid large-scale testing is essential for controlling the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The standard diagnostic pipeline for testing SARS-CoV-2 presence in patients with an ongoing infection is predominantly based on pharyngeal swabs, from which the viral RNA is extracted using commercial kits, followed by reverse transcription and quantitative PCR detection. As a result of the large demand for testing, commercial RNA extraction kits may be limited and, alternatively, non-commercial protocols are needed.

View Article and Find Full Text PDF

HIV-1 Nef is a multifunctional protein that optimizes virus spread and promotes immune evasion of infected cells to accelerate disease progression in AIDS patients. As one of its activities, Nef reduces the motility of infected CD4 T lymphocytes in confined space. In vivo, Nef restricts T lymphocyte homing to lymph nodes as it reduces the ability for extravasation at the diapedesis step.

View Article and Find Full Text PDF

Early after entry into monocytes, macrophages, dendritic cells, and resting CD4 T cells, HIV encounters a block, limiting reverse transcription (RT) of the incoming viral RNA genome. In this context, dNTP triphosphohydrolase SAM domain and HD domain-containing protein 1 (SAMHD1) has been identified as a restriction factor, lowering the concentration of dNTP substrates to limit RT. The accessory lentiviral protein X (Vpx) proteins from the major simian immunodeficiency virus of rhesus macaque, sooty mangabey, and HIV-2 (SIVsmm/SIVmac/HIV-2) lineage packaged into virions target SAMHD1 for proteasomal degradation, increase intracellular dNTP pools, and facilitate HIV cDNA synthesis.

View Article and Find Full Text PDF

Siglec-1 (sialoadhesin, CD169) is a surface receptor on human cells that mediates trans-enhancement of HIV-1 infection through recognition of sialic acid moieties in virus membrane gangliosides. Here, we demonstrate that mouse Siglec-1, expressed on the surface of primary macrophages in an interferon-α-responsive manner, captures murine leukemia virus (MLV) particles and mediates their transfer to proliferating lymphocytes. The MLV infection of primary B-cells was markedly more efficient than that of primary T-cells.

View Article and Find Full Text PDF

Unlike activated CD4(+) T cells, resting CD4(+) T cells are highly resistant to productive HIV-1 infection. Early after HIV-1 entry, a major block limits reverse transcription of incoming viral genomes. Here we show that the deoxynucleoside triphosphate triphosphohydrolase SAMHD1 prevents reverse transcription of HIV-1 RNA in resting CD4(+) T cells.

View Article and Find Full Text PDF

The self-assembling protein nanoparticle (SAPN) is an antigen-presenting system that has been shown to be suitable for use as a vaccine platform. The SAPN scaffold is based on the principles of icosahedral symmetry, beginning from a monomeric chain that self-assembles into an ordered oligomeric state. The monomeric chain contains two covalently linked α-helical coiled-coil domains, an N-terminal de novo-designed pentameric tryptophan zipper and a C-terminal de novo-designed trimeric leucine zipper, which assemble along the internal symmetry axes of an icosahedron.

View Article and Find Full Text PDF

Background: The cellular transmembrane protein CD317/BST-2/HM1.24/Tetherin restricts HIV-1 infection by physically tethering mature virions to the surface of infected cells. HIV-1 counteracts this restriction by expressing the accessory protein Vpu, yet the mechanism of this antagonism is incompletely understood.

View Article and Find Full Text PDF

Vpu antagonizes human immunodeficiency virus type 1 (HIV-1) particle release inhibition by CD317/BST-2/Tetherin. Whether this Vpu activity strictly requires cellular depletion of the restriction factor is unclear. Here, we characterized CD317 variants with mutations in putative sorting or ubiquitination motifs.

View Article and Find Full Text PDF