The abundance of hyaluronic acid (HA) in human tissues attracts its thorough research in tissue regenerating scaffolds and 3D bioprintable hydrogel preparation. Though methacrylation of HA can lead to photo-crosslinkable hydrogels, the catalyst has toxicity concerns, and the hydrogel is not suitable for creating stable complex 3D structures using extrusion 3D bioprinting. In this study, a dual crosslinking on methacrylated HA is introduced, using cysteamine-grafted HA and varying concentrations of 2-hydroxy ethyl acrylate.
View Article and Find Full Text PDFA near-field electrospinnable and three-dimensional (3D) bioprintable gelatin-alginate hydrogel was synthesized by controlling a moderate amount of alginate and a limited amount of crosslinker, tannic acid. This cytocompatible gelatin-alginate tough hydrogel exhibited excellent shape fidelity, a self-standing height exceeding 20 mm, and the capability for multilayer and four-axis 3D printing of complex scaffold shapes. The control of gel strength and rheology enables this hydrogel for successful stretching extrusion under an electric field in near-field electrospinning-induced 3D printing and four-axis printing.
View Article and Find Full Text PDFThe nanocellulosic pellicle derived from the symbiotic culture of bacteria and yeast (Kombucha SCOBY) is an important biomaterial for 3D bioprinting in tissue engineering. However, this nanocellulosic hydrogel has a highly entangled gel network. This needs to be partially modified to improve its processability and extrusion ability for its applications in the 3D bioprinting area.
View Article and Find Full Text PDFBiomimetics (Basel)
February 2024
Three-dimensional bioprinting is a promising technology for bone tissue engineering. However, most hydrogel bioinks lack the mechanical and post-printing fidelity properties suitable for such hard tissue regeneration. To overcome these weak properties, calcium phosphates can be employed in a bioink to compensate for the lack of certain characteristics.
View Article and Find Full Text PDFBackground: Bioglasses are used in applications related to bone rehabilitation and repair. The mechanical and bioactive properties of polysaccharides like alginate and agarose can be modulated or improved using bioglass nanoparticles. Further essential metal ions used as crosslinker have the potential to supplement cultured cells for better growth and proliferation.
View Article and Find Full Text PDFIn extrusion-based 3D printing, the use of synthetic polymeric hydrogels can facilitate fabrication of cellularized and implanted scaffolds with sufficient mechanical properties to maintain the structural integrity and physical stress within the in vivo conditions. However, synthetic hydrogels face challenges due to their poor properties of cellular adhesion, bioactivity, and biofunctionality. New compositions of hydrogel inks have been designed to address this limitation.
View Article and Find Full Text PDFThe Development of bioresponsive extrudable hydrogels for 3D bioprinting is imperative to address the growing demand for scaffold design as well as efficient and reliable methods of tissue engineering and regenerative medicine. This study proposed genipin (5 mg) cross-linked gelatin (1 to 1.5 g)-hyaluronic acid (0.
View Article and Find Full Text PDFControl of in situ 3D bioprinting of hydrogel without toxic crosslinker is ideal for tissue regeneration by reinforcing and homogeneously distributing biocompatible reinforcing agent during fabrication of large area and complex tissue engineering scaffolds. In this study, homogeneous mixing, and simultaneous 3D bioprinting of a multicomponent bioink based on alginate (AL)-chitosan (CH), and kaolin was obtained by an advanced pen-type extruder to ensure structural and biological homogeneity during the large area tissue reconstruction. The static, dynamic and cyclic mechanical properties as well as in situ self-standing printability significantly improved with the kaolin concentration for AL-CH bioink-printed samples due to polymer-kaolin nanoclay hydrogen bonding and cross-linking with less amount of calcium ions.
View Article and Find Full Text PDFBackground: Worldwide, many people suffer from knee injuries and articular cartilage damage every year, which causes pain and reduces productivity, life quality, and daily routines. Medication is currently primarily used to relieve symptoms and not to ameliorate cartilage degeneration. As the natural healing capacity of cartilage damage is limited due to a lack of vascularization, common surgical methods are used to repair cartilage tissue, but they cannot prevent massive damage followed by injury.
View Article and Find Full Text PDFPurpose: The aim of this study was to investigate the efficacy of photo-crosslinked gelatin methacryloyl (GelMa) hydrogel containing calcium phosphate nanoparticles (CNp) when applying different fabrication methods for bone regeneration.
Methods: Four circular defects were created in the calvaria of 10 rabbits. Each defect was randomly allocated to the following study groups: 1) the sham control group, 2) the GelMa group (defect filled with crosslinked GelMa hydrogel), 3) the CNp-GelMa group (GelMa hydrogel crosslinked with nanoparticles), and 4) the CNp+GelMa group (crosslinked GelMa loaded with nanoparticles).
Background: Fine needle aspiration cytology (FNAC) is a valuable tool for evaluating lymphadenopathy. The purpose of this study was to assess the reliability and effectiveness of FNAC in the diagnosis of lymphadenopathy.
Methods: Cytological characteristics were evaluated in 432 patients who underwent lymph node FNAC and follow-up biopsy at the Korea Cancer Center Hospital from January 2015 to December 2019.
Background: The gelatin-methacryloyl (GelMA) polymer suffers shape fidelity and structural stability issues during 3D bioprinting for bone tissue engineering while homogeneous mixing of reinforcing nanoparticles is always under debate.
Method: In this study, amorphous calcium phosphates micro/nanoparticles (CNP) incorporated GelMA is synthesized by developing specific sites for gelatin structure-based nucleation and stabilization in a one-pot processing. The process ensures homogenous distribution of CNPs while different concentrations of gelatin control their growth and morphologies.
Background: The requirements for cell-encapsulated injectable and bioprintable hydrogels are extrusion ability, cell supportive micro-environment and reasonable post-printing stability for the acclimatization of the cells in the target site. Detonation nanodiamond (ND) has shown its potential to improve the mechanical and biological properties of such hydrogels. Enhancing the performance properties of natural biopolymer gelatin-based hydrogels can widen their biomedical application possibilities to various areas including drug delivery, tissue engineering and 3D bioprinting.
View Article and Find Full Text PDFThree-dimensional (3D) bioprinting of self-supporting stable tissue and organ structure is critically important in extrusion-based bioprinting system, especially for tissue engineering and regenerative medicine applications. However, the development of self-standing bioinks with desired crosslinking density, biocompatibility, tunable mechanical strength and other properties like self-healing,gelation, drug or protein incorporation is still a challenge. In this study, we report a hydrogel bioink prepared from alginate (Alg) and hyaluronic acid (HA) crosslinked through multiple crosslinking mechanisms, i.
View Article and Find Full Text PDFBackground: The molecular weight of hyaluronic acid (HyA) depends on the type of organ in the body. When HyA of the desired molecular weight is implanted into the human body for regeneration of damaged tissue, it is degraded by hyaluronidase in associated with an inflammatory response. This study sought to evaluate the effects of HyA molecular weight and concentration on pro- and anti-inflammatory responses in murine macrophages.
View Article and Find Full Text PDFPharyngoesophageal defects can cause exposure to various bacterial flora and severe inflammation. We fabricated a biodegradable polycaprolactone (PCL) patch composed of both thin film and three-dimensional (3D) printed lattice, and then investigated the efficacy of pharyngoesophageal reconstruction by using 3D printed antibiotic-releasing PCL patches that inhibited early inflammation by sustained tetracycline (TCN) release from both thin PCL films and printed rods implanted in esophageal partial defects. PCL was 3D printed in lattice form on a presolution casted PCL thin film at ∼100 μm resolution.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2021
Nanocellulose pellicle is produced as a byproduct during the symbiotic culture of bacteria and yeast in kombucha. It shows good mechanical strength, biocompatibility and hydrophilicity. However, it has limited application in tissue engineering due to its low processability.
View Article and Find Full Text PDFBackground: It is difficult to distinguish parathyroid lesions (PLs) from thyroid lesions using fine needle aspiration cytology (FNAC) because of their proximity and their similar cytomorphological features.
Methods: FNAC smears of 46 patients with pathologically proven PLs that were histologically diagnosed as parathyroid adenoma (PA, = 35), parathyroid hyperplasia (PH, = 3), atypical parathyroid adenoma (APA, = 1), and parathyroid carcinoma (PC, = 7) were retrospectively reviewed and analyzed.
Results: Our initial cytological diagnoses indicated correct diagnoses in 31 of 46 PL patients (67%).
One of the primary challenges in extrusion-based 3D bioprinting is the ability to print self-supported multilayered constructs with biocompatible hydrogels. The bioinks should have sufficient post-printing mechanical stability for soft tissue and organ regeneration. Here, we report on the synthesis, characterization and 3D printability of hyaluronic acid (HA)-carboxymethylcellulose (CMC) hydrogels cross-linked through N-acyl-hydrazone bonding.
View Article and Find Full Text PDFIn this study, carboxymethyl cellulose (CMC)-glycol chitosan (GC) hydrogel, a potential three-dimensional (3D) printing biomaterial ink for tissue engineering applications was synthesized using simple, biocompatible in situ-gelling Schiff's base reaction and ionic interactions. Different grades of hydrogels (C70G30, C50G50 and C30G70) were synthesized at physiological conditions. The oxidation of CMC and imine bond formation in the hydrogel were confirmed spectroscopically.
View Article and Find Full Text PDFHere, we report the striking properties such as high stretchability, self-healing, and adhesiveness of an amphiphilic copolymeric hydrogel (poly(acrylic acid)-poly(methyl methacrylate) (PAA-PMMA) gel) synthesized from two immiscible monomers-acrylic acid (AA) and methyl methacrylate (MMA)-through a simple free radical polymerization in an aqueous medium. The developed hydrogel, with a specific molar ratio of MMA and AA, is self-healable, which is attributed to the hydrophobic interaction arising from methyl groups of PMMA, as well as the breakdown and reformation of sacrificial noncovalent cross-linking through the weak hydrogen bonds between the carboxylic acid groups of PAA and methoxy groups of PMMA. The energy dissipation values in the hysteresis test signify the excellent self-recoverability of the hydrogel.
View Article and Find Full Text PDFTissue Eng Regen Med
February 2019
Background: Tissue engineering is a multidisciplinary field which attracted much attention in recent years. One of the most important issue in tissue engineering is how to obtain high cell numbers and tissue regeneration while maintaining appropriate cellular characteristics for restoring damaged or dysfunctional body tissues and organs. These demands can be achieved by the use of three dimensional (3D) dynamic cultures of cells combined with cell-adhesive micro-carriers.
View Article and Find Full Text PDFHerein, we report a functionalized alginate(Alg)-based terpolymeric semi-interpenetrating (semi-IPN) hydrogel, synthesized via free radical polymerization for the delivery of bovine albumin serum (BSA) and 5-amino salicylic acid (5-ASA). To improve mechanical properties, and to modulate surface morphology of Alg, 2-hydroxyethyl acrylate (HEA) was grafted on alginate and then crosslinked using poly(ethylene glycol) diacrylate (PEGDA). The probable structure and compositions of the synthesized semi-IPN terpolymer were identified by FTIR, H-HR-MAS NMR, and TGA analyses.
View Article and Find Full Text PDF