Publications by authors named "In-Young Yang"

Novel ways to track and verify items of a high value or security is an ever-present need. Taggants made from deoxyribonucleic acid (DNA) have several advantageous properties, such as high information density and robust synthesis; however, existing methods require laboratory techniques to verify, limiting applications. Here, we leverage DNA nanotechnology to create DNA taggants that can be validated in the field in seconds to minutes with a simple equipment.

View Article and Find Full Text PDF

The human antimicrobial peptide LL-37 is known to have chemotactic and modulatory activities on various cells including monocytes, T cells, and epithelial cells. Given that LL-37 enhances chemotactic attraction and modulates the activity of DCs, it is conceivable that it might play a role as an immune adjuvant by skewing the immune environment toward immunostimulatory conditions. In this study, we characterized the mucosal adjuvant activity of LL-37 using model and pathogenic Ags.

View Article and Find Full Text PDF

Oral mucosal vaccination is an alternative method to overcome the pitfalls of current injection-based vaccines, such as pain and high cost of vaccination. It is a feasible and economic vaccine application, especially in developing countries. However, achieving effective antigen delivery into mucosal lymphoid organs and efficient immune stimulation are prerequisites to successful oral mucosal vaccination.

View Article and Find Full Text PDF

Oral mucosal immunization is a feasible and economic vaccination strategy. In order to achieve a successful oral mucosal vaccination, antigen delivery to gut immune inductive site and avoidance of oral tolerance induction should be secured. One promising approach is exploring the specific molecules expressed on the apical surfaces of M cells that have potential for antigen uptake and immune stimulation.

View Article and Find Full Text PDF

The DNA synthesis across DNA lesions, termed translesion synthesis (TLS), is a complex process influenced by various factors. To investigate this process in mammalian cells, we examined TLS across a benzo[a]pyrene dihydrodiol epoxide-derived dG adduct (BPDE-dG) using a plasmid bearing a single BPDE-dG and genetically engineered mouse embryonic fibroblasts (MEFs). In wild-type MEFs, TLS was extremely miscoding (>90%) with G → T transversions being predominant.

View Article and Find Full Text PDF

In the mucosal immune system, M cells are known as specialized epithelial cells that take up luminal antigens, although the receptors on M cells and the mechanism of antigen uptake into M cells are not well-understood. Here, we report the expression of the complement C5a receptor (C5aR) on the apical surface of M cells. C5ar mRNA expression in co-cultured Caco-2 human M-like cells was six-fold higher than in mono-cultured cells.

View Article and Find Full Text PDF

Aristolochic acids I and II (AA-I, AA-II) are found in all Aristolochia species. Ingestion of these acids either in the form of herbal remedies or as contaminated wheat flour causes a dose-dependent chronic kidney failure characterized by renal tubulointerstitial fibrosis. In approximately 50% of these cases, the condition is accompanied by an upper urinary tract malignancy.

View Article and Find Full Text PDF

Translesion DNA synthesis (TLS) of damaged DNA templates is catalyzed by specialized DNA polymerases. To probe the cellular TLS mechanism, a host-vector system consisting of mouse fibroblasts and a replicating plasmid bearing a single DNA adduct was developed. This system was used to explore the TLS mechanism of a heptanone-etheno-dC (H-epsilondC) adduct, an endogenous lesion produced by lipid peroxidation.

View Article and Find Full Text PDF

The repair of acetaldehyde/crotonaldehyde-induced guanine (N2)-guanine (N2) interstrand cross-links (ICLs), 3-(2-deoxyribos-1-yl)-5,6,7,8-(N2-deoxyguanosyl)-6(R or S)-methylpyrimido[1,2-alpha]purine-10(3H)-one, was studied using a shuttle plasmid bearing a site-specific ICL. Since the authentic ICLs can revert to monoadducts, a chemically stable model ICL, 1,3-bis(2'-deoxyguanos-N2-yl)butane derivative, was also employed to probe the ICL repair mechanism. Since the removal of ICL depends on the nucleotide excision repair (NER) mechanism in Escherichia coli, the plasmid bearing the model ICL failed to yield transformants in NER-deficient host cells, proving the stability of this ICL in cells.

View Article and Find Full Text PDF

4-Oxo-2(E)-nonenal, a lipid peroxidation-derived product, reacts with dG, dA, and dC in DNA to form heptanone (H)-etheno (epsilon) adducts. Among the three adducts, H-epsilondC is formed in the greatest abundance in in vitro reactions, and it has been detected in the C57BL/6JAPC(min) mouse model of colorectal cancer. To establish the genotoxic properties of this adduct, a site-specifically modified oligonucleotide was synthesized and incorporated into a shuttle vector.

View Article and Find Full Text PDF

Reaction of crotonaldehyde or two molecules of acetaldehyde with DNA generates 3-(2'-deoxyribos-1'-yl)-5,6,7,8-tetrahydro-8-hydroxy-6-methylpyrimido[1,2-a]purine-10(3H)one (2, Scheme 1), which occurs in (6R, 8R) and (6S, 8S) configurations (Fig. 1). These diastereomers were site-specifically incorporated into oligonucleotides, which were then inserted into a double-stranded DNA vector for genotoxicity studies.

View Article and Find Full Text PDF

alpha-OH-PdG, an acrolein-derived deoxyguanosine adduct, inhibits DNA synthesis and miscodes significantly in human cells. To probe the cellular mechanism underlying the error-free and error-prone translesion DNA syntheses, in vitro primer extension experiments using purified DNA polymerases and site-specific alpha-OH-PdG were conducted. The results suggest the involvement of pol eta in the cellular error-prone translesion synthesis.

View Article and Find Full Text PDF

Acrolein, which is widely spread in the environment and is produced by lipid peroxidation in cells, reacts with DNA to form two exocyclic 1,N2-propanodeoxyguanosine (PdG) adducts. To establish their relative contribution to the acrolein mutagenicity, the genotoxic properties of alpha-OH-PdG and gamma-OH-PdG together with their model DNA adduct, PdG, were studied in human cells. DNA adducts were incorporated site-specifically into a SV40/BK virus origin-based shuttle vector and replicated in xeroderma pigmentosum complementation group A (XPA) cells.

View Article and Find Full Text PDF

Acrolein, widely distributed in the environment and also produced endogenously, forms deoxyguanosine adducts in DNA. The genotoxicity of the major acrolein-dG adduct, 8alpha and 8beta isomers of 3H-8-hydroxy-3-(beta-D-2'-deoxyribofuranosyl)-5,6,7,8-tetrahydropyrido[3,2-a]purine-9-one (gamma-OH-PdG), and the model adduct, PdG, which lacks the hydroxy group of gamma-OH-PdG, was investigated in human cells. The adducts were site-specifically incorporated into a SV40/BK origin-based shuttle vector.

View Article and Find Full Text PDF