Subcritical flux operation is widely practiced in membrane bioreactors (MBRs) to avoid severe membrane fouling and, thus, to maintain sustainable permeability. Filtration at a constant subcritical flux, however, usually leads to a two-stage increase in the transmembrane pressure (TMP): initially slowly, then abruptly. We have investigated the mechanism of this two-stage TMP increase through analyses of the structure and microbial characteristics of the bio-cake formed on the membrane.
View Article and Find Full Text PDFThe effects of a sequencing variation for dissolved oxygen (DO) concentrations on the membrane permeability in a submerged membrane bioreactor (MBR) were studied. An MBR was continuously operated under alternating DO conditions, e.g.
View Article and Find Full Text PDFThe structures of biofilms deposited on the membrane surface under different dissolved oxygen (DO) conditions were characterized to identify its relation to membrane filterability in membrane bioreactors (MBR). The rate of membrane fouling for the low DO (LDO) reactor was 7.5 times faster than that for the high DO (HDO) reactor.
View Article and Find Full Text PDF