With the advances of mass spectrometry (MS) techniques, top-down MS-based proteomics has gained increasing attention because of its advantages over bottom-up MS in studying complex proteoforms. TopPIC Suite is a widely used software package for top-down MS-based proteoform identification and quantification. Here, we present the methods for top-down MS data analysis using TopPIC Suite.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
June 2021
Top-down mass spectrometry (MS) investigates intact proteoforms for proteoform identification, characterization, and quantification. Data visualization plays an essential role in top-down MS data analysis because proteoform identification and characterization often involve manual data inspection to determine the molecular masses of highly charged ions and validate unexpected alterations in identified proteoforms. While many software tools have been developed for MS data visualization, there is still a lack of web-based visualization software designed for top-down MS.
View Article and Find Full Text PDFTop-down mass spectrometry-based proteomics has become the method of choice for identifying and quantifying intact proteoforms in biological samples. We present a web-based gateway for TopPIC suite, a widely used software suite consisting of four software tools for top-down mass spectrometry data interpretation: TopFD, TopPIC, TopMG, and TopDiff. The gateway enables the community to use heterogeneous collection of computing resources that includes high performance computing clusters at Indiana University and virtual clusters on XSEDE's Jetstream Cloud resource for top-down mass spectral data analysis using TopPIC suite.
View Article and Find Full Text PDFTo identify specific biomarkers generated upon exposure of L5178Y mouse lymphoma cells to carcinogens, 2-DE and MALDI-TOF MS analysis were conducted using the cellular proteome of L5178Y cells that had been treated with the known carcinogens, 1,2-dibromoethane and O-nitrotoluene and the noncarcinogens, emodin and D-mannitol. Eight protein spots that showed a greater than 1.5-fold increase or decrease in intensity following carcinogen treatment compared with treatment with noncarcinogens were selected.
View Article and Find Full Text PDF1,2-Dibromoethane and glycidol are well known genotoxic carcinogens, which have been widely used in industry. To identify a specific biomarker for these carcinogens in cells, the cellular proteome of L5178Y mouse lymphoma cells treated with these compounds was analyzed by 2-dimensional gel electrophoresis (2-DE) and MALDI-TOF mass spectrometry (MS). Of 50 protein spots showing a greater than 1.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2010
Autophagy is an apoptosis-independent mechanism of cell death that protects the cell from environmental imbalances and infection by pathogens. We identified a novel small molecule, 2-(3-Benzyl-4-oxo-3,4,5,6,7,8-hexahydro-benzo[4,5]thieno[2,3-d]pyrimidin-2-ylsulfanylmethyl)-oxazole-4-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide (referred as autophagonizer), using high-content cell-based screening and the autophagosome marker EGFP-LC3. Autophagonizer inhibited growth and induced cell death in the human tumor cell lines MCF7, HeLa, HCT116, A549, AGS, and HT1080 via a caspase-independent pathway.
View Article and Find Full Text PDFStreptopyrrolidine, a benzyl pyrrolidine derivative, was isolated as an angiogenesis inhibitor from the fermentation broth of a marine Streptomyces sp. isolated from the deep sea sediment. Its structure was elucidated by extensive 2D NMR and mass spectroscopic analyses.
View Article and Find Full Text PDFAutophagy is a process where cytoplasmic materials are degraded by lysosomal machinery. Histone deacetylase (HDAC) inhibitors induce autophagy, and HDAC6, one of class II HDAC isotypes, is directly involved in autophagic degradation in the cell. However, it is unclear if class I HDAC isotype such as HDCA1 is involved in this process.
View Article and Find Full Text PDFAngiogenesis is an essential step in tumor progress and metastasis. Accordingly, small molecules that inhibit angiogenesis would appear to be a promising way to cure angiogenesis-related diseases, including cancer. In the present study, we report that streptochlorin, a small molecule from marine actinomycete, exhibits a potent antiangiogenic activity.
View Article and Find Full Text PDFTo determine the dominant microorganisms involved in kimchi fermentation and to examine their effect on kimchi fermentation, we randomly isolated and characterized 120 lactic acid bacteria from kimchi during a 5-day fermentation at 15 degrees C. Leuconostoc citreum was dominant during the early and mid-phases of kimchi fermentation whereas Lactobacillus sake/Lactobacillus curvatus or Lactobacillus brevis were found during later stages. Eighty-two out of 120 isolates (68%) were identified as Leuconostoc citreum by means of a polyphasic method, including 16S rDNA sequencing and DNA/DNA hybridization.
View Article and Find Full Text PDF