Skin-attachable sensors, which represent the ultimate form of wearable electronic devices that ensure conformal contact with skin, suffer from motion artifact limitations owing to relative changes in position between the sensor and skin during physical activities. In this study, a polarization-selective structure of a skin-conformable photoplethysmographic (PPG) sensor was developed to decrease the amount of scattered light from the epidermis, which is the main cause of motion artifacts. The motion artifacts were suppressed more than 10-fold in comparison with those of rigid sensors.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2021
Existing soft actuators for adaptive microlenses suffer from high required input voltage, optical loss, liquid loss, and the need for assistant systems. In this study, we fabricate a polyvinyl chloride-based gel using a new synergistic plasticization method to achieve simultaneously a high optical transparency and an ultrasoft rubber-like elastic behavior with a large voltage-induced deformation under a weak electric field. By compressing the smooth gel between two sets of annular electrodes, a self-contained biconvex microlens is realized that is capable of considerable shape changes in the optical path.
View Article and Find Full Text PDF