Publications by authors named "In Yong Park"

Reflection electron energy loss spectroscopy (REELS) has played a pivotal role in allowing researchers to explore the characteristics of various bulk materials. This study presents results for the low-loss region of REELS with a new cylindrical lens spectrometer integrated into a low-voltage scanning electron microscope. The operational principles and implementation of the spectrometer are explained through comparisons between electron optical simulations and experimental results.

View Article and Find Full Text PDF

Low-voltage scanning electron microscopy (LV-SEM) with landing energies below 5 keV has been widely used due to its advantages in mitigating the damage and charging effects to a specimen and enhancing surface information due to small interaction volume of electrons inside a specimen. Additionally, for elemental analysis of the surfaces of bulk specimens with Auger electron spectroscopy (AES) or electron energy loss spectroscopy (EELS), ultra-high-vacuum (UHV) environment is essential to maintain clean surfaces without the absorption of gas molecules during the electron beam irradiation for the acquisition of spectral data. In this study, we propose the optimal design and condition of a conical Electrostatic Objective Lens (EOL) for a UHV LV-SEM to achieve the high spatial resolution and secondary electron (SE) detection efficiency.

View Article and Find Full Text PDF

To date, lanthanum hexaboride (LaB6) thermionic electron sources have not been able fully to capitalize on their inherent potential, resulting in an ambiguous position within the application area. Although they exhibit higher brightness compared with a tungsten filament source, they still fall short of the performance of Schottky electron sources. This study aims to explore the capabilities of the LaB6 electron source under different operating conditions to bridge the gap, ultimately to realize its untapped potential.

View Article and Find Full Text PDF
Article Synopsis
  • The paper discusses the challenges in improving scanning electron microscopy (SEM) imaging due to limitations in point spread functions and noise, which impact image quality.
  • An auto-optimization algorithm using deconvolution is proposed, simplifying the imaging process by not requiring user expertise or nondegraded reference images.
  • The algorithm significantly enhances SEM images of nanoscale materials, achieving better sharpness and contrast, and showing notable improvements in image quality for samples like gold nanoparticles and carbon nanotubes.
View Article and Find Full Text PDF

The energy distribution of an electron gun is one of the most important characteristics determining the performance of electron beam-based instruments, such as electron microscopes and electron energy loss spectroscopes. For accurate measurements of the energy distribution, this study presents a novel retarding field energy analyzer (RFEA) with the feature of an additional integrated pre-lens, which enables an adjustment of beam trajectory into the analyzer. The advantages of this analyzer are its compact size and simple electrode configuration.

View Article and Find Full Text PDF

Low-voltage scanning electron microscopes (LV-SEMs) are widely used in nanoscience. However, image resolution for SEMs is restricted by chromatic aberration due to energy spread of the electron beam at low acceleration voltage. This study introduces a new monochromator (MC) with offset cylindrical lenses (CLs) as one solution for LV-SEMs.

View Article and Find Full Text PDF

Substantial improvement of microvolume UV absorption spectrometry in sensitivity, robustness and ease of operation was achieved for routine biological applications. A unique microtubing-based absorption cell (208 μm internal diameter) featuring enhanced light transmission with a liquid core waveguide technique provided dramatically enhanced absorption sensitivity, proportional to the extended path length (50 mm, from the typical 1 mm), while robust measurement performance was attained by implementation of preventive measures against bubble trapping along the light path. For plasmid DNA, absorbance at 260 nm was reliably measurable down to 0.

View Article and Find Full Text PDF

Spike sorting refers to the technique of detecting signals generated by single neurons from multi-neuron recordings and is a valuable tool for analyzing the relationships between individual neuronal activity patterns and specific behaviors. Since the precision of spike sorting affects all subsequent analyses, sorting accuracy is critical. Many semi-automatic to fully-automatic spike sorting algorithms have been developed.

View Article and Find Full Text PDF

A retarding field energy analyzer (RFEA) for measuring the energy distribution of charged particles offers the advantages of a simple structure and suitability for simultaneous observations of beam patterns in two dimensions. In this study, lens-based RFEAs without a grid electrode were theoretically investigated with regard to the geometry and lens condition to achieve high performance. The simulation results show that the proposed RFEA can achieve a resolution of 2.

View Article and Find Full Text PDF

A gas field ion source (GFIS) has many advantages that are suitable for ion microscope sources, such as high brightness and a small virtual source size, among others. In order to apply a tip-based GFIS to an ion microscope, it is better to create a trimer/single atom tip (TSAT), where the ion beam must be generated in several atoms of the tip apex. Here, unlike the conventional method which uses tip heating or a reactive gas, we show that the tip surface can be cleaned using only the field evaporation phenomenon and that the TSAT can also be fabricated using an insulating layer containing tungsten oxide, which remains after electrochemical etching.

View Article and Find Full Text PDF

Here, we investigate a method to distinguish the counterfeits by patterning multiple reflective type grating directly on the surface of the original product and analyze the serial number from its rotation angles of diffracted fringes. The micro-sized gratings were fabricated on the surface of the material at high speeds by illuminating the interference fringe generated by passing a high-energy pulse laser through the Fresnel biprism. In addition, analysis of the grating's diffraction fringes was performed using a continuous wave laser.

View Article and Find Full Text PDF

Plasmonic high-harmonic generation (HHG) drew attention as a means of producing coherent extreme ultraviolet (EUV) radiation by taking advantage of field enhancement occurring in metallic nanostructures. Here a metal-sapphire nanostructure is devised to provide a solid tip as the HHG emitter, replacing commonly used gaseous atoms. The fabricated solid tip is made of monocrystalline sapphire surrounded by a gold thin-film layer, and intended to produce EUV harmonics by the inter- and intra-band oscillations of electrons driven by the incident laser.

View Article and Find Full Text PDF

A new endogenous cellulase (Ean-EG) from the earthworm, Eisenia andrei and its expression pattern are demonstrated. Based on a deduced amino acid sequence, the open reading frame (ORF) of Ean-EG consisted of 1368 bps corresponding to a polypeptide of 456 amino acid residues in which is contained the conserved region specific to GHF9 that has the essential amino acid residues for enzyme activity. In multiple alignments and phylogenetic analysis, the deduced amino acid sequence of Ean- EG showed the highest sequence similarity (about 79%) to that of an annelid (Pheretima hilgendorfi) and could be clustered together with other GHF9 cellulases, indicating that Ean-EG could be categorized as a member of the GHF9 to which most animal cellulases belong.

View Article and Find Full Text PDF

We present a reliable method for aligning an electron gun which consists of an electron source and lenses by controlling a stack of rubber O-rings in a vacuum condition. The beam direction angle is precisely tilted along two axes by adjusting the height difference of a stack of O-rings. In addition, the source position is shifted in each of three orthogonal directions.

View Article and Find Full Text PDF

For strong field enhancement of ultrashort light pulses, a 3-D metallic funnel-waveguide is analyzed using the finite-difference time-domain (FDTD) method. Then the maximum intensity enhancement actually developed by the funnel-waveguide upon the injection of femtosecond laser pulses is observed using two-photon luminescence (TPL) microscopy. In addition, the ultrafast dephasing profile of the localized field at the hot spot of the funnel-waveguide is verified through the interferometric autocorrelation of the TPL signal.

View Article and Find Full Text PDF

High-harmonic generation by focusing a femtosecond laser onto a gas is a well-known method of producing coherent extreme-ultraviolet (EUV) light. This nonlinear conversion process requires high pulse intensities, greater than 10(13) W cm(-2), which are not directly attainable using only the output power of a femtosecond oscillator. Chirped-pulse amplification enables the pulse intensity to exceed this threshold by incorporating several regenerative and/or multi-pass amplifier cavities in tandem.

View Article and Find Full Text PDF

We developed a program to estimate an examinee s ability in order to provide freely available access to a web-based computerized adaptive testing (CAT) program. We used PHP and Java Script as the program languages, PostgresSQL as the database management system on an Apache web server and Linux as the operating system. A system which allows for user input and searching within inputted items and creates tests was constructed.

View Article and Find Full Text PDF