The present study is aimed at understanding the role of bacterial biomass in functionalizing polyethylenimine (PEI)-coated bacterial biosorbent fiber (PBBF). To make PBBF, chitosan/biomass composite fiber was coated with PEI and then cross-linked by glutaraldehyde. The role of biomass in the fiber was investigated through sorption experiments and SEM, FTIR and XPS analyses with differently prepared fiber sorbents.
View Article and Find Full Text PDFGlutaraldehyde (GA)-crosslinked chitosan beads (GA-CS) are prepared with coagulating solution containing sodium tripolyphosphate and GA, and used for the adsorption of metals from binary-metal solution Au(III) and Pd(II). GA-CS exhibited selective sorption of Au(III) in the Au(III)-Pd(II) mixture. X-ray diffraction analyses showed that Au(III) was reduced to Au(0) following sorption, while Pd(II) was present as unreduced divalent form.
View Article and Find Full Text PDFA fibrous bacterial biosorbent was developed to bind precious metal-organic complexes in batch and column processes. Polyethylenimine (PEI)-modified bacterial biosorbent fiber (PBBF) was prepared by spinning Corynebacterium glutamicum biomass-chitosan blends, coating them with PEI and cross-linking with glutaraldehyde. When an acetic acid waste solution containing 1822.
View Article and Find Full Text PDFThis study introduces a new process for the recovery of gold in porous fiber form by the incineration of Au-loaded biosorbent fiber from gold-cyanide solutions. For the recovery of gold from such aqueous solutions, polyethylenimine (PEI)-modified bacterial biosorbent fiber (PBBF) and PEI-modified chitosan fiber (PCSF) were developed and used. The maximum uptakes of Au(I) ions were estimated as 421.
View Article and Find Full Text PDFThe aim of this study is to optimize preparation method of polyethyleneimine (PEI)-coated bacterial biosorbent in water as reaction media using fermentation waste biomass of Corynebacterium glutamicum as a raw material. The fermentation waste biomass of C. glutamicum and Reactive Red 4 were used as model raw bacterium and pollutant.
View Article and Find Full Text PDFBioresour Technol
November 2010
A new combined way of biosorption and incineration is presented for the recovery of gold from gold-cyanide solutions. Decarboxylated biosorbent (DCB) was prepared by removing interfering carboxyl groups from the surface of inactive Corynebacterium glutamicum. The recovery of gold from the exhausted biosorbents was performed using elution or incineration.
View Article and Find Full Text PDFA new type of biosorbent able to bind anionic metals was developed by cross-linking of waste biomass Escherichia coli with polyallylamine hydrochloride (PAH). The PAH-modified biomass was investigated for the removal and recovery of Pd(II), in the chloro-complex form, from aqueous solution. The performance of the PAH-modified biomass was evaluated in terms of the following parameters: the solution pH, contact time and initial metal concentration.
View Article and Find Full Text PDFA high performance biosorbent, polyethylenimine (PEI)-modified biomass, was prepared by attaching PEI onto the surface of inactive Escherichia coli biomass. Wastewater containing platinum was collected from an industrial laboratory for inductively coupled plasma (ICP) and used for the recovery study. The maximum platinum uptake of PEI-modified biomass was enhanced up to 108.
View Article and Find Full Text PDFIn this paper we studied the potential of nanocrystalline palladium particle production using Cinnamom zeylanicum bark extract (CBE) as the biomaterial for the first time. We studied the effects of biomaterial dosage, pH and temperature on nanoparticle formation; none of these factors had a major effect on the size and shape of the nanoparticles formed. Transmission electron microscopy (TEM) observations confirmed the synthesis of nano-sized palladium particles.
View Article and Find Full Text PDF