Am J Physiol Lung Cell Mol Physiol
November 2023
Alcohol use disorder (AUD) is a significant public health concern and people with AUD are more likely to develop severe acute respiratory distress syndrome (ARDS) in response to respiratory infections. To examine whether AUD was a risk factor for more severe outcome in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we examined early responses to infection using cultured differentiated bronchial epithelial cells derived from brushings obtained from people with AUD or without AUD. RNA-seq analysis of uninfected cells determined that AUD cells were enriched for expression of epidermal genes as compared with non-AUD cells.
View Article and Find Full Text PDFWith the ultimate goal of developing a more representative animal model of Alzheimer's disease (AD), two female amyloid-β-(Aβ) precursor protein-transgenic (APPtg) rhesus monkeys were generated by lentiviral transduction of the gene into rhesus oocytes, followed by fertilization and embryo transfer. The -transgene included the AD-associated Swedish K670N/M671L and Indiana V717F mutations () regulated by the human polyubiquitin-C promoter. Overexpression of was confirmed in lymphocytes and brain tissue.
View Article and Find Full Text PDFHuntington's Disease (HD) is a fatal autosomal dominant neurodegenerative disease manifested through motor dysfunction and cognitive deficits. Decreased fertility is also observed in HD animal models and HD male patients, due to altered spermatogenesis and sperm function, thus resulting in reduced fertilization potential. Although some pharmaceuticals are currently utilized to mitigate HD symptoms, an effective treatment that remedies the pathogenesis of the disease is yet to be approved by the FDA.
View Article and Find Full Text PDFObjective: To demonstrate that functional spermatids can be derived in vitro from nonhuman primate pluripotent stem cells.
Design: Green fluorescent protein-labeled, rhesus macaque nonhuman primate embryonic stem cells (nhpESCs) were differentiated into advanced male germ cell lineages using a modified serum-free spermatogonial stem cell culture medium. In vitro-derived round spermatid-like cells (rSLCs) from differentiated nhpESCs were assessed for their ability to fertilize rhesus oocytes by intracytoplasmic sperm(atid) injection.
Purpose: The expansion of CAG (glutamine; Q) trinucleotide repeats (TNRs) predominantly occurs through male lineage in Huntington's disease (HD). As a result, offspring will have larger CAG repeats compared to their fathers, which causes an earlier onset of the disease called genetic anticipation. This study aims to develop a novel in vitro model to replicate CAG repeat instability in early spermatogenesis and demonstrate the biological process of genetic anticipation by using the HD stem cell model for the first time.
View Article and Find Full Text PDFThe expanded CAG repeat results in somatic mosaicism and genetic anticipation in Huntington's disease (HD). Here we report a longitudinal study examining CAG repeat instability in lymphocytes and sperm of three HD monkeys throughout their whole life-span that encompass the prodromal to symptomatic stages of HD. We demonstrate a progressive increase in CAG repeat length in lymphocytes and sperm as the animals aged.
View Article and Find Full Text PDFHuntington's disease (HD) is a dominantly inherited monogenetic disorder characterized by motor and cognitive dysfunction due to neurodegeneration. The disease is caused by the polyglutamine (polyQ) expansion at the 5' terminal of the exon 1 of the huntingtin () gene, , which results in the accumulation of mutant HTT (mHTT) aggregates in neurons and cell death. The monogenetic cause and the loss of specific neural cell population make HD a suitable candidate for stem cell and gene therapy.
View Article and Find Full Text PDFHuntington's disease (HD) is a devastating monogenic, dominant, hereditary, neurodegenerative disease. HD is caused by the expansion of CAG repeats in exon 1 of the huntingtin (HTT) gene, IT15, resulting in an expanded polyglutamine (polyQ) residue in the N-terminus of the HTT protein. HD is characterized by the accumulation of mutant HTT (mHTT) in neural and somatic cells.
View Article and Find Full Text PDFA transgenic primate model for Huntington's Disease (HD) first reported by our group that (HD monkeys) carry the mutant Huntingtin (HTT) gene with expanded polyglutamine (CAG) repeats and, develop chorea, dystonia, and other involuntary motor deficiencies similar to HD [ 1 ]. More recently, we have found that longitudinal magnetic resonance imaging of the HD monkey brain revealed significant atrophy in regions associated with cognitive deficits symptomatic in HD patients, providing the first animal model which replicates clinical phenotypes of diagnosed humans. Here we report germline transmission of the pathogenic mutant HTT in HD monkey by the production of embryos and subsequent derivation of HD monkey embryonic stem cells (rHD-ESCs) using HD monkey sperm.
View Article and Find Full Text PDF