The ever-increasing volume of complex data poses significant challenges to conventional sequential global processing methods, highlighting their inherent limitations. This computational burden has catalyzed interest in neuromorphic computing, particularly within artificial neural networks (ANNs). In pursuit of advancing neuromorphic hardware, researchers are focusing on developing computation strategies and constructing high-density crossbar arrays utilizing history-dependent, multistate nonvolatile memories tailored for multiply-accumulate (MAC) operations.
View Article and Find Full Text PDFExploring a computing paradigm that blends memory and computation functions is essential for artificial synapses. While memristors for artificial synapses are widely studied due to their energy-efficient structures, random filament conduction in general memristors makes them less preferred for endurability in long-term synaptic modulation. Herein, the topotactic phase transition (TPT) in brownmillerite-phased (110)-SrCoO (SCO) is harnessed to enhance the reversibility of oxygen ion migration through 1-D oxygen vacancy channels.
View Article and Find Full Text PDFThe exotic properties of three-dimensional halide perovskites, such as mixed ionic-electronic conductivity and feasible ion migration, have enabled them to challenge traditional memristive materials. However, the poor moisture stability and difficulty in controlling ion transport due to their polycrystalline nature have hindered their use as a neuromorphic hardware. Recently, two-dimensional (2D) halide perovskites have emerged as promising artificial synapses owing to their phase versatility, microstructural anisotropy in electrical and optoelectronic properties, and excellent moisture resistance.
View Article and Find Full Text PDFTwo-dimensional (2D) halide perovskites have become a promising class of memristive materials due to their low power consumption, compositional versatility, and microstructural anisotropy in electronics. However, implementing high-performance resistive random-access memory requires a higher reliability and moisture resistance. To address these issues, component studies and attempts to improve the phase stability have been reported but have not been able to achieve sufficient reliability.
View Article and Find Full Text PDFThe current memory system is facing obstacles to improvement, and ReRAM is considered a powerful alternative. All-inorganic α-CsPbI perovskite-based ReRAM working by electrochemical mechanism is reported, but the electrochemically active electrode raised difficulty in long-term stable operation, and bulk α-CsPbI device can not show resistive switching behavior with an inert metal top electrode. Herein, by making the α-CsPbI into QDs and applying it to the device with inert Au as the top electrode, the devices working by valence change mechanism are successfully fabricated.
View Article and Find Full Text PDFNumerous efforts for emulating organ systems comprised of multiple functional units have driven substantial advancements in bio-realistic electronics and systems. The resistance change behavior observed in diffusive memristors shares similarities with the potential change in biological neurons. Here, the diffusive threshold switching phenomenon in Ag-incorporated organometallic halide perovskites is utilized to demonstrate the functions of afferent neurons.
View Article and Find Full Text PDFRecently, artificial synapses involving an electrochemical reaction of Li-ion have been attributed to have remarkable synaptic properties. Three-terminal synaptic transistors utilizing Li-ion intercalation exhibits reliable synaptic characteristics by exploiting the advantage of non-distributed weight updates owing to stable ion migrations. However, the three-terminal configurations with large and complex structures impede the crossbar array implementation required for hardware neuromorphic systems.
View Article and Find Full Text PDFIn resistive switching memories or artificial synaptic devices, halide perovskites have attracted attention for their unusual features such as rapid ion migration, adjustable composition, and facile synthesis. Herein, the environmentally friendly and highly air stable CsCuI perovskite films are used as the active layer in the Au/CsCuI/ITO/glass artificial synapses. The device shows variable synaptic plasticities such as long-term and short-term synaptic plasticity, paired-pulse facilitation, and spike-timing-dependent plasticity by combining potentiation and depression along the formation of conductive filaments.
View Article and Find Full Text PDFOrganometallic and all-inorganic halide perovskites (HPs) have recently emerged as promising candidate materials for resistive switching (RS) nonvolatile memory due to their current-voltage hysteresis caused by fast ion migration. Lead-free and all-inorganic HPs have been researched for non-toxic and environmentally friendly RS memory devices. However, only HP-based devices with electrochemically active top electrode (TE) exhibit ultra-low operating voltages and high on/off ratio RS properties.
View Article and Find Full Text PDFThe electrical switching behavior of the GeTe phase-changing material grown by atomic layer deposition is characterized for the phase change random access memory (PCRAM) application. Planar-type PCRAM devices are fabricated with a TiN or W bottom electrode (BE). The crystallization behavior is characterized by applying an electrical pulse train and analyzed by applying the Johnson-Mehl-Avrami kinetics model.
View Article and Find Full Text PDF