We successfully control the interaction dynamics between optical parametric oscillation (OPO) and stimulated Raman scattering, leading to the generation of distinct frequency comb states in a microresonator. Through Raman-scattered photons, a Raman comb with a sech2 envelope is demonstrated having a broad RF beat note linewidth of several hundred kHz. Moreover, under a specific coupling regime, we successfully generate self-locked Raman single-solitons which is confirmed by a narrow RF beat note of 25 Hz.
View Article and Find Full Text PDFTransporting cold atoms between interconnected vacuum chambers is an important technique for increasing the versatility of cold atom setups, particularly for those that couple atoms to photonic devices. In this report, we introduce a method where we are able to image the atoms at all points during transport via moving optical dipole trap. Cooled Rb atoms are transported ∼50 cm into an auxiliary vacuum chamber while being monitored with a moving-frame imaging system for which in-situ characterization of the atom transport is demonstrated.
View Article and Find Full Text PDFDissipative Kerr solitons in ultra-high- resonators are extremely sensitive to the thermal behavior of the resonators. Especially for resonators with hydrophilic surfaces, moisture continuously adsorbs on their surfaces and causes additional absorption loss that results in an excessive thermal shift of resonance frequency. This change makes soliton mode locking more challenging or even impossible.
View Article and Find Full Text PDFReducing the complexity required for starting and maintaining a soliton state has been a major task to fully miniaturize soliton microcombs including the accompanying external operating systems. Here we experimentally examine the generative process of a self-stabilized soliton in which a continuous-wave pump detuned on the thermally stable blue side of a resonance generates a Brillouin lasing signal that relays the pump power to the soliton pulses via intracavity mode-coupling without breaking thermal self-stability. Based on a simple setup consisting of a free-running laser and a microcavity without any external feedback systems by virtue of internal thermal locking, single-soliton pulses of 11 GHz repetition rate were deterministically generated.
View Article and Find Full Text PDFBy providing an effective way to leverage nonlinear phenomena in integrated devices, high-Q optical resonators have led to recent advances in on-chip photonics. However, developing fabrication processes to shape any new material into a resonator with extremely smooth surfaces on a chip has been an exceptionally challenging task. Here, we describe a universal method to implement ultra-high-Q resonators with any new material having desirable properties that can be deposited by physical vapor deposition.
View Article and Find Full Text PDFUnlabelled: Despite wide application of photodynamic therapy (PDT) for the treatment of melanoma skin cancers, there are strong biomedical unmet needs for the effective generation of singlet oxygen after targeted delivery of photosensitizers. Here, we investigated a facile PDT of melanoma skin cancer using transdermal carbon dot - chlorine e6 - hyaluronate (Cdot-Ce6-HA) conjugates. The Cdot-Ce6-HA conjugate was synthesized by the coupling reaction of diaminohexane modified HA (DAH-HA) with the carboxylic group of Ce6.
View Article and Find Full Text PDF