Publications by authors named "In Hwa Bae"

Background: Resistance acquired after radiotherapy is directly related to the failure of various cancer treatments, including GBM. Because the mechanism for overcoming radioresistance has not yet been clearly identified, the development of diagnostic and therapeutic markers to treat radioresistance is necessary. Since increased expression of stemness- and EMT-related markers are reported to be closely correlated with radioresistance, research is underway to develop new drugs targeting these factors.

View Article and Find Full Text PDF

Background: Although the representative treatment for colorectal cancer (CRC) is radiotherapy, cancer cells survive due to inherent radioresistance or resistance acquired after radiation treatment, accelerating tumor malignancy and causing local recurrence and metastasis. However, the detailed mechanisms of malignancy induced after radiotherapy are not well understood. To develop more effective and improved radiotherapy and diagnostic methods, it is necessary to clearly identify the mechanisms of radioresistance and discover related biomarkers.

View Article and Find Full Text PDF

Background: Solid tumors promote tumor malignancy through interaction with the tumor microenvironment, resulting in difficulties in tumor treatment. Therefore, it is necessary to understand the communication between cells in the tumor and the surrounding microenvironment. Our previous study revealed the cancer malignancy mechanism of Bcl-w overexpressed in solid tumors, but no study was conducted on its relationship with immune cells in the tumor microenvironment.

View Article and Find Full Text PDF

High-dose radiation (HDR) is widely used for cancer treatment, but the effectiveness of low-dose radiation (LDR) in the treatment of various diseases is controversial. Therefore, to safely utilize LDR for therapeutic purposes, further research on its numerous biological effects of LDR is required. Interest in the increased use of medical imaging devices or the effects of surrounding living environmental radiation on the human body, particularly on fibrosis, is rapidly increasing.

View Article and Find Full Text PDF

Radiotherapy is widely used for cancer treatment, but paradoxically, it has been reported that surviving cancer cells can acquire resistance, leading to recurrence or metastasis. Efforts to reduce radioresistance are required to increase the effectiveness of radiotherapy. miRNAs are advantageous as therapeutic agents because it can simultaneously inhibit the expression of several target mRNAs.

View Article and Find Full Text PDF
Article Synopsis
  • * Hypoxia in solid tumors can lead to increased factors that promote tumor growth and spread, complicating treatment outcomes for non-small cell lung cancer (NSCLC) due to acquired resistance.
  • * The study found that miR-519d-3p can inhibit Bcl-w and HIF-1α expression, showing potential as a diagnostic biomarker and therapeutic target for improving NSCLC treatment efficacy.
View Article and Find Full Text PDF

Breast cancer is the most common female cancer in the world. Despite the active research on metastatic breast cancer, the treatment of breast cancer patients is still difficult because the mechanism is not well known. Therefore, research on new targets and mechanisms for diagnosis and treatment of breast cancer patients is required.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied locally advanced rectal cancer (LARC) patients by grouping them based on how they responded to radiation and created organoids from their tumor tissues.
  • They used RNA sequencing to analyze gene expression profiles and found 30 candidate genes related to radio-resistance, focusing on pathways like immune response and DNA repair.
  • One gene, cathepsin E, showed varying methylation levels linked to the patients’ radio-resistance, indicating that methylation may play a role in how well the cancer responds to treatment, which could lead to a new diagnostic tool for LARC patients.
View Article and Find Full Text PDF

Glioblastoma multiforme (GBM), a particularly aggressive type of malignant brain tumor, has a high mortality rate. Bcl-w, an oncogene, is reported to enhance cell survival, proliferation, epithelial-mesenchymal transition (EMT), migratory and invasive abilities, and stemness maintenance in a variety of cancer cell types, including GBM. In this study, we confirmed that Bcl-w-induced conditional medium (CM) enhances tumorigenic phenotypes of migration, invasiveness, and stemness maintenance.

View Article and Find Full Text PDF

Although radiotherapy has been successfully applied to treat many cancer types, surviving cancer cells often acquire therapeutic resistance, leading to increased risk of local recurrence and distant metastases via modification of the tumor microenvironment. Previously, we reported that high expression of Bcl-w in cancer patients is significantly correlated with poor survival as well as malignant activity. However, the relationship between ionizing radiation (IR)-induced resistance and Bcl-w expression in cancer cells is currently unclear.

View Article and Find Full Text PDF

Cellular senescence, a distinctive type of irreversible growth arrest, develops in response to various stimuli. Bcl-w, an oncogene and member of the Bcl-2 family, has been reported to promote tumorigenicity in various cancer cells. Here, we sought to explore the potential role of Bcl-w in premature senescence, which has received relatively little research attention.

View Article and Find Full Text PDF

Understanding the molecular mechanisms that underlie the aggressive behavior and relapse of breast cancer may help in the development of novel therapeutic interventions. CUB-domain-containing protein 1 (CDCP1), a transmembrane adaptor protein, is highly maintained and required in the context of cellular metastatic potential in triple-negative breast cancer (TNBC). For this reason, gene expression levels of CDCP1 have been considered as a prognostic marker in TNBC.

View Article and Find Full Text PDF

Radiotherapy represents the most effective non-surgical modality in cancer treatment. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression, and are involved in many biological processes and diseases. To identify miRNAs that influence the radiation response, we performed miRNA array analysis using MCF7 cells at 2, 8, and 24 h post irradiation.

View Article and Find Full Text PDF

Radiotherapy induces the production of cytokines, thereby increasing aggressive tumor behavior. This radiation effect results in the failure of radiotherapy and increases the mortality rate in patients. We found that interleukin-4 (IL-4) and IL-4Rα (IL-4 receptor) are highly expressed in various human cancer cells subsequent to radiation treatment.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play pivotal roles in tumorigenesis as either tumor suppressors or oncogenes. In the present study, we discovered and demonstrated the tumor suppressive function of a novel miRNA miR-5582-5p. miR-5582-5p induced apoptosis and cell cycle arrest in cancer cells, but not in normal cells.

View Article and Find Full Text PDF

One of the initial steps in metastatic dissemination is the epithelial-mesenchymal transition (EMT). Along this line, microRNAs (miRNAs) have been shown to function as important regulators of tumor progression at various stages. Therefore, we performed a functional screening for EMT-regulating miRNAs and identified several candidate miRNAs.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) is essential for increased invasion and metastasis during cancer progression. Among the candidate EMT-regulating microRNAs that we previously identified, miR-181b-3p was found to induce EMT in MCF7 breast cancer cells, as indicated by an EMT-characteristic morphological change, increased invasiveness, and altered expression of an EMT marker. Transfection with a miR-181b-3p inhibitor reduced the expression of mesenchymal markers and the migration and invasion of highly invasive breast cancer cells.

View Article and Find Full Text PDF

Cellular senescence is a state of irreversible growth arrest that can be triggered by multiple mechanisms, including telomere shortening, the epigenetic derepression of the INK4α/ARF locus and DNA damage. Senescence has been considered a tumor‑suppressing mechanism that permanently arrests cells at risk for malignant transformation. However, accumulating evidence shows that senescent cells have deleterious effects on the tissue microenvironment.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common malignant brain tumor and exhibits aggressive and invasive behavior. We previously identified four miRNAs-miR-29b, 494, 193a-3p, and 30e-with enhanced expression in GBM following treatment of ionizing radiation by miRNA microarray analysis. In this study, we found that only miR-29b inhibited tumor cell migration and invasion by reducing MMP-2 activity via phospho-AKT/β-catenin signaling, and stimulated a more epithelial-like morphology.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at the transcriptional and post-transcriptional levels. Here we show that miR-30e, which was previously identified as an ionizing radiation-inducible miRNA, enhances cellular invasion by promoting secretion of the matrix metalloproteinase MMP-2. The enhancement of cellular invasion by miR-30e involved up-regulation of the epidermal growth factor receptor (EGFR) and subsequent activation of its downstream signaling mediators, AKT and extracellular signal-regulated kinase.

View Article and Find Full Text PDF

3-Hydroxy-3',4'-dimethoxyflavone (HDMF) is a natural chemical product that is not currently regarded as a drug. In our study, we employed glioblastoma cells and cell biology and biochemistry approaches to investigate the potential of HDMF as a natural anticancer therapy option. FACS analysis showed that treatment concentration of HDMF does not exert cytotoxicity on U251 cells.

View Article and Find Full Text PDF

We already had reported that Bcl-w promotes invasion or migration in gastric cancer cells and glioblastoma multiforme (GBM) by activating matrix metalloproteinase-2 (MMP-2) via specificity protein 1 (Sp1) or β-cateinin, respectively. High expression of Bcl-w also has been reported in GBM which is the most common malignant brain tumor and exhibits aggressive and invasive behavior. These reports propose that Bcl-w-induced signaling is strongly associated with aggressive characteristic of GBM.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play an important role in various stages of tumor progression. miR-494, which we had previously identified as a miRNA induced by ionizing radiation (IR) in the glioma cell line U-251, was observed to enhance invasion of U-251 cells by activating MMP-2. The miR-494-induced invasive potential was accompanied by, and dependent on, epidermal growth factor receptor (EGFR) upregulation and the activation of its downstream signaling constituents, Akt and ERK.

View Article and Find Full Text PDF