The linker histone H1 C-terminal domain (CTD) plays a pivotal role in chromatin condensation. De novo frameshift mutations within the CTD coding region of H1.4 have recently been reported to be associated with Rahman syndrome, a neurological disease that causes intellectual disability and overgrowth.
View Article and Find Full Text PDFCENP-A is an essential histone variant that replaces the canonical H3 at the centromeres and marks these regions epigenetically. The CENP-A nucleosome is the specific building block of centromeric chromatin, and it is recognized by CENP-C and CENP-N, two components of the constitutive centromere-associated network (CCAN), the first protein layer of the kinetochore. Recent proposals of the yeast and human (h)CCAN structures position the assembly on exposed DNA, suggesting an elusive spatiotemporal recognition.
View Article and Find Full Text PDFInteractions of DNA with structural proteins such as histones, regulatory proteins and enzymes play a crucial role in major cellular processes such as transcription, replication and repair. The in vivo mapping and characterization of the binding sites of the involved biomolecules are of primary importance for a better understanding of genomic deployment that is implicated in tissue and developmental stage-specific gene expression regulation. The most powerful and commonly used approach to date is immunoprecipitation of chemically cross-linked chromatin (XChIP) coupled with sequencing analysis (ChIP-seq).
View Article and Find Full Text PDFSeveral classes of oxidatively generated DNA damage including oxidized purine and pyrimidine bases, interstrand base crosslinks and DNA-protein crosslinks have been previously shown to be generated in both isolated DNA and cellular DNA upon exposure to either 266-nm laser irradiation or one-electron oxidants. In this study, we provide evidence that biphotonic ionization of guanine bases by UVC laser irradiation of double-stranded deoxyoligonucleotides in aerated aqueous solutions induces the formation of interstrand crosslinks (ICLs). This is supported by various experiments including sequencing gel analyses of formed photoproducts and effects of UVC laser intensity on their formation.
View Article and Find Full Text PDFThe epithelial-to-mesenchymal transition (EMT) is a physiological process activated during early embryogenesis, which continues to shape tissues and organs later on. It is also hijacked by tumor cells during metastasis. The regulation of EMT has been the focus of many research groups culminating in the last few years and resulting in an elaborate transcriptional network buildup.
View Article and Find Full Text PDFLinker histones associate with nucleosomes to promote the formation of higher-order chromatin structure, but the underlying molecular details are unclear. We investigated the structure of a 197 bp nucleosome bearing symmetric 25 bp linker DNA arms in complex with vertebrate linker histone H1. We determined electron cryo-microscopy (cryo-EM) and crystal structures of unbound and H1-bound nucleosomes and validated these structures by site-directed protein cross-linking and hydroxyl radical footprinting experiments.
View Article and Find Full Text PDFFACT, in addition to its role in transcription, is likely implicated in both transcription-coupled nucleotide excision repair and DNA double strand break repair. Here, we present evidence that FACT could be directly involved in Base Excision Repair and elucidate the chromatin remodeling mechanisms of FACT during BER. We found that, upon oxidative stress, FACT is released from transcription related protein complexes to get associated with repair proteins and chromatin remodelers from the SWI/SNF family.
View Article and Find Full Text PDFThyroid hormones control various aspects of gut development and homeostasis. The best-known example is in gastrointestinal tract remodeling during amphibian metamorphosis. It is well documented that these hormones act via the TR nuclear receptors, which are hormone-modulated transcription factors.
View Article and Find Full Text PDFNF-κB is a key transcription factor regulating the expression of inflammatory responsive genes. How NF-κB binds to naked DNA templates is well documented, but how it interacts with chromatin is far from being clear. Here we used a combination of UV laser footprinting, hydroxyl footprinting and electrophoretic mobility shift assay to investigate the binding of NF-κB to nucleosomal templates.
View Article and Find Full Text PDFBackground & Objectives: The complementary and alternative medicines (CAM) have not been systematically evaluated for the management of HIV/AIDS patients. In a prospective, single-site, open-label, non-randomized, controlled, pilot trial, we evaluated a polyherbal formulation (PHF) for its safety and efficacy in treating subjects with HIV-AIDS.
Methods: A total of 32 and 31 subjects were enrolled under the PHF and highly active antiretroviral treatment (HAART) arms, respectively, and followed up for a period of 24 months.
Intestinal homeostasis results from complex cross-regulation of signaling pathways; their alteration induces intestinal tumorigenesis. Previously, we found that the thyroid hormone nuclear receptor TRα1 activates and synergizes with the WNT pathway, inducing crypt cell proliferation and promoting tumorigenesis. Here, we investigated the mechanisms and implications of the cross-regulation between these two pathways in gut tumorigenesis in vivo and in vitro.
View Article and Find Full Text PDFBackground: Genetic studies have provided ample evidence of the influence of non-coding DNA polymorphisms on trait variance, particularly those occurring within transcription factor binding sites. Protein binding microarrays and other platforms that can map these sites with great precision have enhanced our understanding of how a single nucleotide polymorphism can alter binding potential within an in vitro setting, allowing for greater predictive capability of its effect on a transcription factor binding site.
Results: We have used protein binding microarrays and electrophoretic mobility shift assay-sequencing (EMSA-Seq), a deep sequencing based method we developed to analyze nine distinct human NF-κB dimers.