Publications by authors named "Imtiaz A Taj"

Purpose: The purpose of this study is to develop an automated method using deep learning for the reliable and precise quantification of left ventricle structure and function from echocardiogram videos, eliminating the need to identify end-systolic and end-diastolic frames. This addresses the variability and potential inaccuracies associated with manual quantification, aiming to improve the diagnosis and management of cardiovascular conditions.

Methods: A single, fully automated multitask network, the EchoFused Network (EFNet) is introduced that simultaneously addresses both left ventricle segmentation and ejection fraction estimation tasks through cross-module fusion.

View Article and Find Full Text PDF

Echocardiography is one of the imaging systems most often utilized for assessing heart anatomy and function. Left ventricle ejection fraction (LVEF) is an important clinical variable assessed from echocardiography via the measurement of left ventricle (LV) parameters. Significant inter-observer and intra-observer variability is seen when LVEF is quantified by cardiologists using huge echocardiography data.

View Article and Find Full Text PDF

Glaucoma is a chronic ocular degenerative disease that can cause blindness if left untreated in its early stages. Deep Convolutional Neural Networks (Deep CNNs) and its variants have provided superior performance in glaucoma classification, segmentation, and detection. In this paper, we propose a two-staged glaucoma classification scheme based on Deep CNN architectures.

View Article and Find Full Text PDF

This article presents an efficient fingerprint identification system that implements an initial classification for search-space reduction followed by minutiae neighbor-based feature encoding and matching. The current state-of-the-art fingerprint classification methods use a deep convolutional neural network (DCNN) to assign confidence for the classification prediction, and based on this prediction, the input fingerprint is matched with only the subset of the database that belongs to the predicted class. It can be observed for the DCNNs that as the architectures deepen, the farthest layers of the network learn more abstract information from the input images that result in higher prediction accuracies.

View Article and Find Full Text PDF

Face recognition aims to establish the identity of a person based on facial characteristics. On the other hand, age group estimation is the automatic calculation of an individual's age range based on facial features. Recognizing age-separated face images is still a challenging research problem due to complex aging processes involving different types of facial tissues, skin, fat, muscles, and bones.

View Article and Find Full Text PDF

Face recognition has emerged as the fastest growing biometric technology and has expanded a lot in the last few years. Many new algorithms and commercial systems have been proposed and developed. Most of them use Principal Component Analysis (PCA) as a base for their techniques.

View Article and Find Full Text PDF