Background: Information on the impact of genetic predisposition on metal toxicokinetics in the human body is limited. There is increasing evidence that certain genetic polymorphisms modify lead and mercury toxicokinetics. This called for analysis of further candidate genes.
View Article and Find Full Text PDFThe PDR5 gene encodes the major multidrug resistance efflux pump in Saccharomyces cerevisiae. In drug-resistant cells, the hyperactive Pdr1p or Pdr3p transcriptional activators are responsible for the PDR5 upregulation. In this work, it is shown that the RPD3 gene encoding the histone deacetylase that functions as a transcriptional corepressor at many promoters and the ROM2 gene coding for the GDP/GTP exchange protein for Rho1p and Rho2p participating in signal transduction pathways are required for PDR5 transcription under cycloheximide-induced and noninduced conditions.
View Article and Find Full Text PDFThe PDR1 and PDR3 genes encode the main transcription activators involved in the control of multidrug resistance in Saccharomyces cerevisiae. To identify the amino acids essential for Pdr3p function, the loss-of-function pdr3 mutants were isolated and characterized. Two plasmid-borne pdr3 alleles, pdr3-E902Ter and pdr3-D853Y, which failed to complement drug hypersensitivity in the Deltapdr1Deltapdr3 mutant strain, were isolated.
View Article and Find Full Text PDFMultidrug resistance in yeast results from over-expression of drug efflux transporter genes due to gain-of-function mutations in transcription factors. To suppress multidrug resistance at the level of gene expression, we have developed a yeast-based screening system for the detection of compounds down-regulating the major multidrug ABC transporter Pdr5p expressed under the control of Pdr3p transcription factor. Here, we report the construction and properties of the improved set of yeast strains designed along with such screening also for a global analysis of genetic suppressors of multidrug resistance.
View Article and Find Full Text PDFWe demonstrate a genomewide approach to determine the physiological role of a putative transcription factor, Ylr266, identified through yeast genome sequencing program. We constructed activated forms of the zinc finger (Zn(2)Cys(6)) protein Ylr266, and we analyzed the corresponding transcriptomes with DNA microarrays to characterize the up-regulated genes. The direct target genes of Ylr266 were further identified by in vivo chromatin immunoprecipitation procedure.
View Article and Find Full Text PDF