Breast cancer is the most prevalent cancer type in women worldwide. It proliferates rapidly and can metastasize into farther tissues at any stage due to the gradual invasiveness and motility of the tumor cells. These crucial properties are the outcome of the weakened intercellular adhesion, regulated by small guanosine triphosphatases (GTPases), which hydrolyze to the guanosine diphosphate (GDP)-bound conformation.
View Article and Find Full Text PDFThe low binding affinity of unmodified triplex-forming oligonucleotides (TFO) is the main drawback to their promising utilization in gene therapy. In the present study, we have synthesized DNA intercalator 5-(pyren-1-ylethynyl)indole Y, known as twisted intercalating nucleic acid (TINA), by a Cu-mediated Sonogashira palladium-catalyzed coupling reaction of 1-ethynylpyrene with 5-iodoindole at a high temperature under anaerobic conditions. Coupling with indole C-5 was far more preferable in obtaining stable TINA-indole than enamine site C-3, as neither hydration of the triple bond to ketones nor competitive Glaser-type homocoupling of acetylenes was observed.
View Article and Find Full Text PDFKRAS mutations are primary genetic lesions leading to pancreatic cancer. The promoter of human KRAS contains a nuclease-hypersensitive element (NHE) that can fold in G4-DNA structures binding to nuclear proteins, including MAZ (myc-associated zinc-finger). Here, we report that MAZ activates KRAS transcription.
View Article and Find Full Text PDFHuman telomeric DNA has the ability to fold into a 4-stranded G-quadruplex structure. Several G-quadruplex ligands are known to stabilize the structure and thereby inhibit telomerase activity. Such ligands have demonstrated efficient telomerase inhibition in dilute conditions, but under molecular crowding conditions mimicking physiological milieu, stabilization of the telomeric G-quadruplex is often lost.
View Article and Find Full Text PDFThe sensitivity and specificity of clinical diagnostic assays using DNA hybridization techniques are limited by the dissociation of double-stranded DNA (dsDNA) antiparallel duplex helices. This situation can be improved by addition of DNA stabilizing molecules such as nucleic acid intercalators. Here, we report the synthesis of a novel ortho-Twisted Intercalating Nucleic Acid (TINA) amidite utilizing the phosphoramidite approach, and examine the stabilizing effect of ortho- and para-TINA molecules in antiparallel DNA duplex formation.
View Article and Find Full Text PDFBackground: Melting temperature of DNA structures can be determined on the LightCycler using quenching of FAM. This method is very suitable for pH independent melting point (Tm) determination performed at basic or neutral pH, as a high throughput alternative to UV absorbance measurements. At acidic pH quenching of FAM is not very suitable, since the fluorescence of FAM is strongly pH dependent and drops with acidic pH.
View Article and Find Full Text PDFA new quadruplex motif located in the promoter of the human KRAS gene, within a nuclease hypersensitive element (NHE), has been characterized. Oligonucleotides mimicking this quadruplex are found to compete with a DNA-protein complex between NHE and a nuclear extract from pancreatic cancer cells. When modified with (R)-1-O-[4-1-(1-pyrenylethynyl) phenylmethyl]glycerol insertions (TINA), the quadruplex oligonucleotides showed a dramatic increase of the T(m) (deltaT(m) from 22 to 32 degrees C) and a strong antiproliferative effects in Panc-1 cells.
View Article and Find Full Text PDFA highly efficient method for postsynthetic modification of unprotected oligonucleotides incorporating internal insertions of (R)-1-O-(4-ethynylbenzyl)glycerol has been developed through the application of click chemistry with water-insoluble pyren-1-yl azide and water-soluble benzyl azide and acceleration by microwave irradiation. The twisted intercalating nucleic acids (TINAs) obtained in these reactions, possessing bulged insertions of (R)-3-O-{4-[1-(pyren-1-yl)-1H-1,2,3-triazol-4-yl]benzyl}glycerol (7), formed parallel triplexes with thermal stabilities of 20.0, 34.
View Article and Find Full Text PDFTwisted intercalating nucleic acids (TINA) possessing acridine derivatives have been synthesized via the postsynthetic modifications of oligonucleotides possessing insertions of (R)-1-O-(4-iodobenzyl)glycerol (8) or (R)-1-O-(4-ethynylbenzyl)glycerol (9) at the 5'-end or in the middle as a bulge. In the first postsynthetic step, oligonucleotides 8 and 9 on the CPG support were treated with a Sonogashira coupling reaction mixture containing 9-chloro-2-ethynylacridine or 9-chloro-2-iodoacridine, respectively. After the postsynthetic step, treatment of the oligonucleotides with 32% aq ammonia or 50% ethanolic solution of tris(2-aminoethyl)amine led to the substitution of chloride on acridine concurrent with deprotection of the bases and cleavage of the oligonucleotides from CPG.
View Article and Find Full Text PDF