Bacteria can form biofilms on any surface, which causes biofilm-associated infections and bacterial resistance to antibiotics. Thus, it is important to design new-generation non-chemotherapeutic nanoagents for effective antibacterial and antibiofilm strategies. Herein, the effects of the anchoring groups, which are imidazole and carboxylic acid, of zinc phthalocyanines (ZnPcs) sensitized TiO on () and () were investigated under light-emitting diode (LED) irradiation.
View Article and Find Full Text PDFHydrogen evolution at polarized liquid-liquid interfaces [water/1,2-dichloroethane (DCE)] by the electron donor decamethylferrocene (DMFc) is catalyzed efficiently by the fabricated cobalt sulfide (CoS) nanoparticles and nanocomposites of CoS nanoparticles formed on multi-walled carbon nanotubes (CoS/CNT). The suspended CoS/CNT nanocomposite catalysts at the interface show a higher catalytic activity for the hydrogen evolution reaction (HER) than the CoS nanoparticles due to the high dispersity and conductivity of the CNT materials, which can serve as the main charge transport pathways for the injection of electrons to attain the catalytic sites of the nanoparticles. The reaction rate increased more than 1000-fold and 300-fold by using CoS/CNT and CoS catalysts, respectively, when compared to a non-catalyzed reaction.
View Article and Find Full Text PDFThe electrochemical deposition of Cu nanoparticles with an average diameter of approximately 25-35 nm has been reported at liquid-liquid interfaces by using the organic-phase electron-donor decamethylferrocene (DMFc). The electrodeposited Cu nanoparticles display excellent catalytic activity for the hydrogen evolution reaction (HER); this is the first reported catalytic effect of Cu nanoparticles at liquid-liquid interfaces.
View Article and Find Full Text PDFThe photochemical reactivity of osmocene in a biphasic water-organic solvent system has been investigated to probe its water splitting properties. The photoreduction of aqueous protons to hydrogen under anaerobic conditions induced by osmocene dissolved in 1,2-dichloroethane and the subsequent water splitting by the osmocenium metal-metal dimer formed during H(2) production were studied by electrochemical methods, UV-visible spectrometry, gas chromatography, and nuclear magnetic resonance spectroscopy. Density functional theory computations were used to validate the reaction pathways.
View Article and Find Full Text PDF