Publications by authors named "Imren Bayil"

In recent decades, Alzheimer's disease (AD) has garnered significant attention due to its rapid global prevalence. The cholinergic hypothesis posits that the degradation of acetylcholine by acetylcholinesterase (AChE) contributes to AD development. Despite existing anti-AChE drugs, their adverse side effects necessitate new agents.

View Article and Find Full Text PDF

Polydatin, a natural derivative of resveratrol, has shown many anticancer properties. However, the underlying mechanisms of its anticancer properties including its effect on the epigenetic landscape are not well understood. Here, we explored the effect of polydatin on histone deacetylase 1 (HDAC1) activity.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a significant health issue globally, affecting approximately 10 % of the world's population. The prevalence of CRC highlights the need for effective treatments and prevention strategies. The current therapeutic option, such as chemotherapy, has significant side effects.

View Article and Find Full Text PDF

Schistosomiasis, also known as bilharzia or snail fever, is a tropical parasitic disease resulting from flatworms of the Schistosoma genus. This often overlooked disease has significant impacts in affected regions, causing enduring morbidity, hindering child development, reducing productivity, and creating economic burdens. Praziquantel (PZQ) is currently the only treatment option for schistosomiasis.

View Article and Find Full Text PDF

Breast cancer (BC) is still one of the major issues in world health, especially for women, which necessitates innovative therapeutic strategies. In this study, we investigated the efficacy of retinoic acid derivatives as inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), which plays a crucial role in the biosynthesis and metabolism of oestrogen and thereby influences the progression of BC and, the main objective of this investigation is to identify the possible drug candidate against BC through computational drug design approach including PASS prediction, molecular docking, ADMET profiling, molecular dynamics simulations (MD) and density functional theory (DFT) calculations. The result has reported that total eight derivatives with high binding affinity and promising pharmacokinetic properties among 115 derivatives.

View Article and Find Full Text PDF
Article Synopsis
  • Schistosomiasis is a significant neglected tropical disease that causes long-term health issues, particularly affecting child development and economic productivity in affected areas.
  • Researchers are focusing on discovering new effective treatments due to challenges like drug resistance, using advanced techniques like quantitative structure-activity relationship (QSAR) studies and molecular simulations on 39 compounds targeting a specific enzyme (SmTGR).
  • A leading candidate was identified (compound 40) from this study, leading to the design of 12 new compounds with improved efficacy and stability, indicating their potential as innovative treatments for schistosomiasis.
View Article and Find Full Text PDF

Endocrine-disrupting chemicals (EDCs) are substances that can disrupt the normal functioning of hormones.Using aptamers, which are biological recognition elements, biosensors can quickly and accurately detect EDCs in environmental samples. However, the elucidation of aptamer structures by conventional methods is highly challenging due to their complexity.

View Article and Find Full Text PDF

Colorectal cancer is the second leading cause of cancer-related deaths. In 2018, there were an estimated 1.8 million cases, and this number is expected to increase to 2.

View Article and Find Full Text PDF

Gastric cancer is considered a class 1 carcinogen that is closely linked to infection with Helicobacter pylori (H. pylori), which affects over 1 million people each year. However, the major challenge to fight against H.

View Article and Find Full Text PDF

Human T-cell leukemia virus 1 (HTLV-1) associated lymphoma is a devastating malignancy triggered by HTLV-1 infections. We employeda comprehensive drug design and computational strategy in this work to explore the inhibitory activitiesof Astilbin derivatives against HTLV-1-associated lymphoma. We evaluated the stability, binding affinities, and various computational analysis of Astilbin derivatives against target proteins, such as HTLV-1 main protease and HTLV-1 capsid protein.

View Article and Find Full Text PDF

Background: () is a persistent bacterial inhabitant in the stomachs of approximately half the global populace. This bacterium is directly linked to chronic gastritis, leading to a heightened risk of duodenal and gastric ulcer diseases, and is the predominant risk factor for gastric cancer - the second most common cause of cancer-related deaths globally. The increasing prevalence of antibiotic resistance necessitates the exploration of innovative treatment alternatives to mitigate the menace.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC), accounting for 10-15% of all breast malignancies, is more prevalent in women under 40, particularly in those of African descent or carrying the BRCA1 mutation. TNBC is characterized by the absence of estrogen and progesterone receptors (ER, PR) and low or elevated HER2 expression. It represents a particularly aggressive form of breast cancer with limited therapeutic options and a poorer prognosis.

View Article and Find Full Text PDF

The present study deals with the advanced in-silico analyses of several Apigenin derivatives to explore human papillomavirus-associated cervical cancer and DNA polymerase theta inhibitor properties by molecular docking, molecular dynamics, QSAR, drug-likeness, PCA, a dynamic cross-correlation matrix and quantum calculation properties. The initial literature study revealed the potent antimicrobial and anticancer properties of Apigenin, prompting the selection of its potential derivatives to investigate their abilities as inhibitors of human papillomavirus-associated cervical cancer and DNA polymerase theta. In silico molecular docking was employed to streamline the findings, revealing promising energy-binding interactions between all Apigenin derivatives and the targeted proteins.

View Article and Find Full Text PDF

The widespread emergence of antimalarial drug resistance has created a major threat to public health. Malaria is a life-threatening infectious disease caused by Plasmodium spp., which includes Apicoplast DNA polymerase and Plasmodium falciparum cysteine protease falcipain-2.

View Article and Find Full Text PDF

Tick-borne Babesiosis is a parasitic infection caused by that can infect both animals and humans and may spread by tick, blood transfusions, and organ transplantation. The current therapeutic options for are limited, and drug resistance is a concern. This study proposes using computational drug design approaches to find and design an effective drug against .

View Article and Find Full Text PDF

Mosquitoes are the primary vector for West Nile virus, a flavivirus. The virus's ability to infiltrate and establish itself in increasing numbers of nations has made it a persistent threat to public health worldwide. Despite the widespread occurrence of this potentially fatal disease, no effective treatment options are currently on the market.

View Article and Find Full Text PDF

Herein, eight new NHC-based selenourea derivatives were synthesized and characterized by using spectroscopic method (H, F, and C NMR, FT-IR), and elemental analysis techniques. These compounds were synthesized by mixing benzimidazolium salts, potassium carbonate, and selenium powder in ethyl alcohol. Additionally, the molecular and crystal structures of the three compounds (, , and ) were determined using the single-crystal x-ray diffraction (XRD) method.

View Article and Find Full Text PDF