Publications by authors named "Imre Bako"

In this work, comprehensive ab initio quantum chemical calculations using the DFT level of theory were performed to characterize the stabilization interactions (H-bonding and hyperconjugation effects) of two stable symmetrical conformations of α-, β-, and γ-cyclodextrins (CDs). For this purpose, we analyzed the electron density using "Atom in molecules" (AIM), "Natural Bond Orbital" (NBO), and energy decomposition method (CECA) in 3D and in Hilbert space. We also calculated the H-bond lengths and OH vibrational frequencies.

View Article and Find Full Text PDF

Ab initio molecular dynamics (AIMD) simulations have been performed on aqueous solutions of four simple sugars, α-d-glucose, β-d-glucose, α-d-mannose, and α-d-galactose. Hydrogen-bonding (HB) properties, such as the number of donor- and acceptor-type HB-s, and the lengths and strengths of hydrogen bonds between sugar and water molecules, have been determined. Related electronic properties, such as the dipole moments of water molecules and partial charges of the sugar O atoms, have also been calculated.

View Article and Find Full Text PDF

A self-consistent scheme is presented that is applicable for revealing details of the microscopic structure of hydrogen-bonded liquids, including the description of the hydrogen-bonded network. The scheme starts with diffraction measurements, followed by molecular dynamics simulations. Computational results are compared with the experimentally accessible information on the structure, which is most frequently the total scattering structure factor.

View Article and Find Full Text PDF

The quantum harmonic model and the two-phase thermodynamic method (2PT) are widely used to obtain quantum-corrected properties such as isobaric heat capacities or molar entropies. 2PT heat capacities were calculated inconsistently in the literature. For water, the classical heat capacity was also considered, but for organic liquids, it was omitted.

View Article and Find Full Text PDF

New X-ray and neutron diffraction experiments have been performed on ethanol-water mixtures as a function of decreasing temperature, so that such diffraction data are now available over the entire composition range. Extensive molecular dynamics simulations show that the all-atom interatomic potentials applied are adequate for gaining insight into the hydrogen-bonded network structure, as well as into its changes on cooling. Various tools have been exploited for revealing details concerning hydrogen bonding, as a function of decreasing temperature and ethanol concentration, like determining the H-bond acceptor and donor sites, calculating the cluster-size distributions and cluster topologies, and computing the Laplace spectra and fractal dimensions of the networks.

View Article and Find Full Text PDF

Hydrogen bonding to chloride ions has been frequently discussed over the past 5 decades. Still, the possible role of such secondary intermolecular bonding interactions in hydrogen bonded networks has not been investigated in any detail. Here we consider computer models of concentrated aqueous LiCl solutions and compute the usual hydrogen bond network characteristics, such as distributions of cluster sizes and of cyclic entities, both for models that take and do not take chloride ions into account.

View Article and Find Full Text PDF

Nuclear quantum effects have significant contributions to thermodynamic quantities and structural properties; furthermore, very expensive methods are necessary for their accurate computation. In most calculations, these effects, for instance, zero-point energies, are simply neglected or only taken into account within the quantum harmonic oscillator approximation. Herein, we present a new method, Generalized Smoothed Trajectory Analysis, to determine nuclear quantum effects from molecular dynamics simulations.

View Article and Find Full Text PDF

Series of molecular dynamics simulations for 2-propanol-water mixtures, as a function of temperature (between freezing and room temperature) and composition ( = 0, 0.5, 0.1, and 0.

View Article and Find Full Text PDF

Molecular dynamics computer simulations have been conducted for ethanol-water liquid mixtures in the water-rich side of the composition range, with 10, 20, and 30 mol % of alcohol, at temperatures between room temperature and the experimental freezing point of the given mixture. All-atom-type (optimized potential for liquid simulations) interatomic potentials have been assumed for ethanol, in combination with two kinds of rigid water models (SPC/E and TIP4P/2005). Both combinations have provided excellent reproductions of the experimental X-ray total structure factors at each temperature; this yielded a strong basis for further structural analyses.

View Article and Find Full Text PDF

Using a unique combination of slab-layering analyses and identification of truly interfacial molecules, this work examines water/vapor and water/n-hexane interfaces, specifically the structural and dynamic perturbations of the interfacial water molecules at different locations within the surface capillary waves. From both the structural and dynamic properties analyzed, it is found that these interfacial water molecules dominate the perturbations within the interfacial region, which can extend deep into the water phase relative to the Gibbs dividing surface. Of more importance is the demonstration of structural and dynamic heterogeneity of the interfacial water molecules at the capillary wave front, as indicated by the dipole orientation and the structural and dynamic behavior of hydrogen bonds and their networks.

View Article and Find Full Text PDF

It is discussed that finite basis Density Functional Theory (DFT) calculations using a single Kohn-Sham determinant cannot reproduce, in a strict mathematical sense, the exact electron density corresponding to the same finite basis. This is because the DFT density derives from an idempotent first order density matrix, while the exact (full CI) density can only be obtained from a nonidempotent one. The problem is absent for the original Kohn-Sham integro-differential equations or if a strictly complete basis set is assumed.

View Article and Find Full Text PDF

The problem of performing many-body decompositions of energy is considered in the case when BSSE corrections are also performed. It is discussed that the two different schemes that have been proposed go back to the two different interpretations of the original Boys-Bernardi counterpoise correction scheme. It is argued that from the physical point of view the "hierarchical" scheme of Valiron and Mayer should be preferred and not the scheme recently discussed by Ouyang and Bettens, because it permits the energy of the individual monomers and all the two-body, three-body, etc.

View Article and Find Full Text PDF

The evolution of the structure of liquid water-methanol mixtures as a function of temperature has been studied by molecular dynamics simulations, with a focus on hydrogen bonding. The combination of the OPLS-AA (all atom) potential model of methanol and the widely used SPC/E water model has provided excellent agreement with measured X-ray diffraction data over the temperature range between 298 and 213 K, for mixtures with methanol molar fractions of 0.2, 0.

View Article and Find Full Text PDF

It is demonstrated that the localized orbitals calculated for a water cluster have small delocalization tails along the hydrogen bonds, that are crucial in determining the resulting dipole moments of the system. (By cutting them, one gets much smaller dipole moments for the individual monomers-close to the values one obtains by using a Bader-type analysis.) This means that the individual water monomers can be delimited only in a quite fuzzy manner, and the electronic charge density in a given point cannot be assigned completely to that or another molecule.

View Article and Find Full Text PDF

The results of dipole moment as well as of intra- and intermolecular bond order calculations indicate the big importance of collective electrostatic effects caused by the nonimmediate environment in liquid water models. It is also discussed how these collective effects are built up as consequences of the electrostatic and quantum chemical interactions in water clusters.

View Article and Find Full Text PDF

The identity of the predominating lead(ii) species in hyper-alkaline aqueous solution has been determined by Raman spectroscopy, and ab initio quantum chemical calculations and its structure has been determined by EXAFS. The observed and calculated Raman spectra for the [Pb(OH)3](-) complex are in agreement while they are different for two-coordinated complexes and complexes containing Pb[double bond, length as m-dash]O double bonds. Predicted bond lengths are also consistent with the presence of [Pb(OH)3](-) and exclude the formation of Pb[double bond, length as m-dash]O double bond(s).

View Article and Find Full Text PDF

Precise molecular-level information on the water molecule is precious, since it affects our interpretation of the role of water in a range of important applications of aqueous media. Here we propose that electronic structure calculations for highly hydrated crystals yield such information. Properties of nine structurally different water molecules (19 independent OO hydrogen bonds) in the Al(NO3)3·9H2O crystal have been calculated from DFT calculations.

View Article and Find Full Text PDF

Networks are increasingly recognized as important building blocks of various systems in nature and society. Water is known to possess an extended hydrogen bond network, in which the individual bonds are broken in the sub-picosecond range and still the network structure remains intact. We investigated and compared the topological properties of liquid water and methanol at various temperatures using concepts derived within the framework of graph and network theory (neighbour number and cycle size distribution, the distribution of local cyclic and local bonding coefficients, Laplacian spectra of the network, inverse participation ratio distribution of the eigenvalues and average localization distribution of a node) and compared them to small world and Erdős-Rényi random networks.

View Article and Find Full Text PDF

Two alternative qualitative reactivity models have recently been proposed to interpret the facile heterolytic cleavage of H2 by frustrated Lewis pairs (FLPs). Both models assume that the reaction takes place via reactive intermediates with preorganized acid/base partners; however, they differ in the mode of action of the active centers. In the electron transfer (ET) model, the hydrogen activation is associated with synergistic electron donation processes with the simultaneous involvement of active centers and the bridging hydrogen, showing similarity to transition-metal-based and other H2-activating systems.

View Article and Find Full Text PDF

The solvation structure around the dicyanoaurate(I) anion (Au(CN)) in a dilute nitromethane (CHNO) solution is presented from X-ray diffraction measurements and molecular dynamics simulation (NVT ensemble, 460 nitromethane molecules at room temperature). The simulations are based on a new solute-solvent force-field fitted to a training set of quantum-chemically derived interaction energies. Radial distribution functions from experiment and simulation are in good agreement.

View Article and Find Full Text PDF

Explicit solvent molecular dynamics simulations of the ((t)Bu)(3)P/B(C(6)F(5))(3) pair in toluene allowed the estimation of the degree of intermolecular association and the population of encounter complex states in solution phase.

View Article and Find Full Text PDF

Gold based model systems exhibiting the structural versatility of nanoparticle ensembles and being accessible for surface spectroscopic investigations are expected to provide new information about the adsorption of carbon monoxide, a key process influencing the CO oxidation activity of this noble metal in nanoparticulate form. Accordingly, in the present work the interaction of CO is studied with an ion bombardment modified Au(111) surface by means of a combination of photoelectron spectroscopy (XPS and UPS), sum frequency generation vibrational spectroscopy (SFG), and scanning tunneling microscopy (STM). While no adsorption was found on intact Au(111), data collected on the ion bombarded surface at cryogenic temperatures indicated the presence of stable CO adsorbates below 190 K.

View Article and Find Full Text PDF

Molecular dynamics simulations have been performed for liquid formamide using two different types of potential model (OPLS, Cordeiro). The structural results obtained from simulation were compared to experimental (x-ray and neutron diffraction measurements) outcomes. A generally good agreement for both models examined has been found, but in the hydrogen bonded region (2.

View Article and Find Full Text PDF

The explicit water molecular dynamics simulation was used to study tetramethylammonium and tetraethylammonium chloride and bromide solutions in water at 298 K. The outcome of the simulations in the form of various distribution functions was used to construct the solvent-averaged potentials between interacting molecules. In the next step, which involved the Ornstein-Zernike integral equation theory in the hypernetted chain approximation, these potentials were used to calculate the osmotic coefficients.

View Article and Find Full Text PDF

The structure of a series of aqueous sodium nitrate solutions (1.9-7.6 M) was studied using a combination of experimental and theoretical methods.

View Article and Find Full Text PDF