Publications by authors named "Imran Haq"

manifests adaptability to grow under varying agro-climatic scenarios. Assessing quinoa germplasm's phenotypic and genetic variability is a prerequisite for introducing it as a potential candidate in cropping systems. Adaptability is the basic outcome of ecological genomics of crop plants.

View Article and Find Full Text PDF

Unlabelled: possesses remarkable nutritional value and adaptability to various agroecological conditions. Panicle architecture influences the number of spikelets and grains in a panicle, ultimately leading to productivity and yield. Therefore, this study aimed to investigate the metabolites, nutrients, and minerals in accessions of varying panicle architecture.

View Article and Find Full Text PDF

Quantitative real-time PCR is used to quantify gene expression, even to detect low-level transcripts. It detects and quantifies the inoculum level of fungal pathogens in infected hosts. However, reliable expression profiling data require accurate transcript normalization against a stable reference gene.

View Article and Find Full Text PDF

We investigated the characterization of short-length nucleotide sequences that were differentially expressed in dieback stress-induced transcriptomic analysis. They displayed homology with C-terminal flanking peptides and defensins-like proteins, revealing their antimicrobial activity. Their predicted fingerprints displayed protein signatures related to antimicrobial peptides.

View Article and Find Full Text PDF

is one of the most economically important trees in forestry, agroforestry, and horticulture. This tree species is severely threatened by dieback. Widespread dieback outbreaks and infestations have drastically destroyed billions of trees.

View Article and Find Full Text PDF

Unlabelled: We investigated the role of the DDTFR10/A gene of the ethylene response element-binding protein (EREBP) family through the CRISPR/Cas9 genome editing approach. The associated role of this gene in tomato fruit ripening was known. The involvement of ripening-regulatory proteins in plant defense has been documented; therefore, to find the involvement of the DDTFR10/A gene in host susceptibility, we introduced the mutation in DDTFR10/A gene through CRISPR/cas9 in the genome of the tomato plant.

View Article and Find Full Text PDF

is an important timber tree, and dieback disease poses a dire threat to it toward extinction. The genomic record of is not available yet on any database; that is why it is challenging to probe the genetic elements involved in stress resistance. Hence, we attempted to unlock the genetics involved in dieback resistance through probing the NBS-LRR family, linked with mostly disease resistance in plants.

View Article and Find Full Text PDF

Pathogenicity-associated genes are highly host-specific and contribute to host-specific virulence. We tailored the traditional Koch's postulates with integrative omics by hypothesizing that the effector genes associated with host-pathogenicity are determinant markers for virulence, and developed Integrative Pathogenicity (IP) postulates for authenticated pathogenicity testing in plants. To set the criteria, we experimented on datepalm () for the vascular wilt pathogen and confirmed the pathogen based on secreted in xylem genes (effectors genes) using genomic and transcriptomic approaches, and found it a reliable solution when pathogenicity is in question.

View Article and Find Full Text PDF

Background: Disease-resistant cultivars are the best solution to get their maximum yield potential and avoid fungicide application. There is no doubt about the contribution, and use of R genes (resistance genes) in resistance development in plants, while S genes (susceptibility genes) also hold a strong position in pathogenesis by resistance repression, and their loss of function contributes to enhanced resistance. Hence, we attempted to knock out the function of the StERF3 gene in potatoes through CRISPR/Cas9-based genome editing and investigated the CRISPR/Cas9 approach as strategic control against late blight disease in potato plants.

View Article and Find Full Text PDF

Background: The digital pathology images obtain the essential information about the patient's disease, and the automated nuclei segmentation results can help doctors make better decisions about diagnosing the disease. With the speedy advancement of convolutional neural networks in image processing, deep learning has been shown to play a significant role in the various analysis of medical images, such as nuclei segmentation, mitosis detection and segmentation etc. Recently, several U-net based methods have been developed to solve the automated nuclei segmentation problems.

View Article and Find Full Text PDF

α1-antitrypsin deficiency is characterised by the misfolding and intracellular polymerisation of mutant α1-antitrypsin protein within the endoplasmic reticulum (ER) of hepatocytes. Small molecules that bind and stabilise Z α-antitrypsin were identified via a DNA-encoded library screen. A subsequent structure based optimisation led to a series of highly potent, selective and cellular active α1-antitrypsin correctors.

View Article and Find Full Text PDF

Severe α -antitrypsin deficiency results from the Z allele (Glu342Lys) that causes the accumulation of homopolymers of mutant α -antitrypsin within the endoplasmic reticulum of hepatocytes in association with liver disease. We have used a DNA-encoded chemical library to undertake a high-throughput screen to identify small molecules that bind to, and stabilise Z α -antitrypsin. The lead compound blocks Z α -antitrypsin polymerisation in vitro, reduces intracellular polymerisation and increases the secretion of Z α -antitrypsin threefold in an iPSC model of disease.

View Article and Find Full Text PDF

This case report deals with two patients with lacrimal sac swellings. Case 1 presented with bilateral sac swelling and Case 2 with a unilateral presentation. Dacrocystorhinostomy (DCR) followed by biopsies of both sacs in Case 1 revealed inflammatory polyps of the sac mucosa, identical in appearance to typical nasal allergic inflammatory polyps.

View Article and Find Full Text PDF

Many serpinopathies, including alpha-1 antitrypsin (A1AT) deficiency, are associated with the formation of unbranched polymer chains of mutant serpins. In vivo, this deficiency is the result of mutations that cause kinetic or thermodynamic destabilization of the molecule. However, polymerization can also be induced in vitro from mutant or wild-type serpins under destabilizing conditions.

View Article and Find Full Text PDF

Severe alpha-1-antitrypsin deficiency (AATD) is most frequently associated with the alpha-1-antitrypsin (AAT) Z variant (E342K). ZZ homozygotes exhibit accumulation of AAT as polymers in the endoplasmic reticulum of hepatocytes. This protein deposition can lead to liver disease, with the resulting low circulating levels of AAT predisposing to early-onset emphysema due to dysregulation of elastinolytic activity in the lungs.

View Article and Find Full Text PDF

To assess the improvement in neurocognitive functions after carotid endarterectomy (CEA) under local anesthesia (LA) in patients with carotid bifurcation occlusive disease. Department of Vascular Surgery, Combined Military Hospital Lahore from January 2013 to January 2015. A total of 79 patients with carotid artery occlusive disease, having no history of major stroke, depression, or dementia underwent CEA under LA.

View Article and Find Full Text PDF

Serpins are important regulators of proteolytic pathways with an antiprotease activity that involves a conformational transition from a metastable to a hyperstable state. Certain mutations permit the transition to occur in the absence of a protease; when associated with an intermolecular interaction, this yields linear polymers of hyperstable serpin molecules, which accumulate at the site of synthesis. This is the basis of many pathologies termed the serpinopathies.

View Article and Find Full Text PDF

Misfolding, polymerization, and defective secretion of functional alpha-1 antitrypsin underlies the predisposition to severe liver and lung disease in alpha-1 antitrypsin deficiency. We have identified a novel (Ala336Pro, Baghdad) deficiency variant and characterized it relative to the wild-type (M) and Glu342Lys (Z) alleles. The index case is a homozygous individual of consanguineous parentage, with levels of circulating alpha-1 antitrypsin in the moderate deficiency range, but is a biochemical phenotype that could not be classified by standard methods.

View Article and Find Full Text PDF

Native mass spectrometry (MS) methods permit the study of multiple protein species within solution equilibria, whereas ion mobility (IM)-MS can report on conformational behavior of specific states. We used IM-MS to study a conformationally labile protein (α1 -antitrypsin) that undergoes pathological polymerization in the context of point mutations. The folded, native state of the Z-variant remains highly polymerogenic in physiological conditions despite only minor thermodynamic destabilization relative to the wild-type variant.

View Article and Find Full Text PDF

Mutant Z α1-antitrypsin (E342K) accumulates as polymers within the endoplasmic reticulum (ER) of hepatocytes predisposing to liver disease, whereas low levels of circulating Z α1-antitrypsin lead to emphysema by loss of inhibition of neutrophil elastase. The ideal therapy should prevent polymer formation while preserving inhibitory activity. Here we used mAb technology to identify interactors with Z α1-antitrypsin that comply with both requirements.

View Article and Find Full Text PDF

A monoclonal antibody (mAb) that binds to a transient intermediate may act as a catalyst for the corresponding reaction; here we show this principle can extend on a macro molecular scale to the induction of mutant-like oligomerization in a wild-type protein. Using the common pathogenic E342K (Z) variant of α1-antitrypsin as antigen-whose native state is susceptible to the formation of a proto-oligomeric intermediate-we have produced a mAb (5E3) that increases the rate of oligomerization of the wild-type (M) variant. Employing ELISA, gel shift, thermal stability and FRET time-course experiments, we show that mAb5E3 does not bind to the native state of α1-antitrypsin, but recognizes a cryptic epitope in the vicinity of the post-helix A loop and strand 4C that is revealed upon transition to the polymerization intermediate, and which persists in the ensuing oligomer.

View Article and Find Full Text PDF

α1-Antitrypsin is primarily synthesised in the liver, circulates to the lung and protects pulmonary tissues from proteolytic damage. The Z mutant (Glu342Lys) undergoes inactivating conformational change and polymerises. Polymers are retained within the hepatocyte endoplasmic reticulum (ER) in homozygous (PiZZ) individuals, predisposing the individuals to hepatic cirrhosis and emphysema.

View Article and Find Full Text PDF

Background: Titanium cranioplasty (TC) has been associated with high complication rates, but abundant data are lacking. We aimed to determine the incidence and type of complications following TC and risk factors for complications.

Methods: A retrospective review was performed on 174 patients who underwent TC at two London units over a seven year period.

View Article and Find Full Text PDF