With the evolution in technology, communication based on the voice has gained importance in applications such as online conferencing, online meetings, voice-over internet protocol (VoIP), etc. Limiting factors such as environmental noise, encoding and decoding of the speech signal, and limitations of technology may degrade the quality of the speech signal. Therefore, there is a requirement for continuous quality assessment of the speech signal.
View Article and Find Full Text PDFRetinal vessel segmentation is an important task in medical image analysis and has a variety of applications in the diagnosis and treatment of retinal diseases. In this paper, we propose SegR-Net, a deep learning framework for robust retinal vessel segmentation. SegR-Net utilizes a combination of feature extraction and embedding, deep feature magnification, feature precision and interference, and dense multiscale feature fusion to generate accurate segmentation masks.
View Article and Find Full Text PDFBrain tumors are one of the most fatal cancers. Magnetic Resonance Imaging (MRI) is a non-invasive method that provides multi-modal images containing important information regarding the tumor. Many contemporary techniques employ four modalities: T1-weighted (T1), T1-weighted with contrast (T1c), T2-weighted (T2), and fluid-attenuation-inversion-recovery (FLAIR), each of which provides unique and important characteristics for the location of each tumor.
View Article and Find Full Text PDF