The methyl erythritol phosphate (MEP) pathway of isoprenoid biosynthesis is essential for malaria parasites and also for several human pathogenic bacteria, thus representing an interesting target for future antimalarials and antibiotics and for diagnostic strategies. We have developed a DNA aptamer (D10) against 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), the second enzyme of this metabolic route. D10 binds in vitro to recombinant DXR from and , showing at 10 µM a ca.
View Article and Find Full Text PDFThe evolution of resistance by the malaria parasite to artemisinin, the key component of the combination therapy strategies that are at the core of current antimalarial treatments, calls for the urgent identification of new fast-acting antimalarials. The apicoplast organelle is a preferred target of antimalarial drugs because it contains biochemical processes absent from the human host. Fosmidomycin is the only drug in clinical trials targeting the apicoplast, where it inhibits the methyl erythritol phosphate (MEP) pathway.
View Article and Find Full Text PDFCombination therapies, where two drugs acting through different mechanisms are administered simultaneously, are one of the most efficient approaches currently used to treat malaria infections. However, the different pharmacokinetic profiles often exhibited by the combined drugs tend to decrease treatment efficacy as the compounds are usually eliminated from the circulation at different rates. To circumvent this obstacle, we have engineered an immunoliposomal nanovector encapsulating hydrophilic and lipophilic compounds in its lumen and lipid bilayer, respectively.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
November 2020
Background And Objective: The present paper aims to study the inhibition of Candida albicans growth as candidiasis treatment, using seeds of Lepidium sativum as source.
Methods: In vitro assays were carried out on the antifungal activity of three kinds of extracts from L. sativum seeds against four strains of C.
We have developed a new liquid chromatography-electrospray ionization tandem mass spectrometry methodology based on 2-picolylamine derivatization and positive ion mode detection for abscisic acid (ABA) identification. The selected reaction leads to the formation of an amide derivative which contains a highly active pyridyl group. The enhanced ionization allows for a 700-fold increase over commonly monitored unmodified ABA, which in turn leads to excellent limits of detection and quantification values of 0.
View Article and Find Full Text PDFThe synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I.
View Article and Find Full Text PDFTuberculosis remains a major infectious disease to humans. It accounts for approximately 8-9 million new cases worldwide and an estimated 1.6 million deaths annually.
View Article and Find Full Text PDFAn important goal of nanotechnology is the application of individual molecule handling techniques to the discovery of potential new therapeutic agents. Of particular interest is the search for new inhibitors of metabolic routes exclusive of human pathogens, such as the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway essential for the viability of most human pathogenic bacteria and of the malaria parasite. Using atomic force microscopy single-molecule force spectroscopy (SMFS), we have probed at the single-molecule level the interaction of 1-deoxy-D-xylulose 5-phosphate synthase (DXS), which catalyzes the first step of the MEP pathway, with its two substrates, pyruvate and glyceraldehyde-3-phosphate.
View Article and Find Full Text PDFBackground: The methylerythritol phosphate pathway for isoprenoid biosynthesis is an attractive target for the design of new specific antibiotics for the treatment of gastrointestinal diseases associated with the presence of the bacterium Helicobacter pylori since this pathway which is essential to the bacterium is absent in humans.
Results: This work reports the molecular cloning of one of the genes of the methylerythritol phosphate pathway form H. pylori (ispDF; HP_1440) its expression in Escherichia coli and the functional characterization of the recombinant enzyme.
The methylerythritol 4-phosphate (MEP) pathway for the biosynthesis of the isoprenoid universal building blocks (isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP)) is present in most of human pathogens and is absent in animals, turning it into a promising therapeutic druggable pathway. Two different strategies, a pharmacophore-directed virtual screening and a protein-protein interaction (PPI)-mimicking cyclic peptide were used to search for compounds that bind to the PPI surface of the 4-(cytidine 5-diphospho)-2C-methyl-D-erythritol kinase (CMK), which catalyzes the fourth step of the MEP pathway. A significant part of the pharmacophore hypothesis used in this study was designed by mimicking water-mediated PPI relevant in the CMK homodimer complex stabilization.
View Article and Find Full Text PDFTuberculosis is one of the leading infectious diseases in humans. Discovering new treatments for this disease is urgently required, especially in view of the emergence of multiple drug resistant organisms and to reduce the total duration of current treatments. The synthesis of isoprenoids in Mycobacterium tuberculosis has been reported as an interesting pathway to target, and particular attention has been focused on the methylerythritol phosphate (MEP) pathway comprising the early steps of isoprenoid biosynthesis.
View Article and Find Full Text PDFThe 2C-methylerythritol 4-phosphate (MEP) pathway for the biosynthesis of isopentenyl pyrophosphate and its isomer dimethylallyl pyrophosphate, which are the precursors of isoprenoids, is present in plants, in the malaria parasite Plasmodium falciparum and in most eubacteria, including pathogenic agents. However, the MEP pathway is absent from fungi and animals, which have exclusively the mevalonic acid pathway. Given the characteristics of the MEP pathway, its enzymes represent potential targets for the generation of selective antibacterial, antimalarial and herbicidal molecules.
View Article and Find Full Text PDFThe X-ray crystal structure of the 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (MCS) from Arabidopsis thaliana has been solved at 2.3 A resolution in complex with a cytidine-5-monophosphate (CMP) molecule. This is the first structure determined of an MCS enzyme from a plant.
View Article and Find Full Text PDFWe report an assay for the determination of the activity of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, the enzyme which catalyzes the fourth reaction step of the 2-C-methyl-D-erythritol 4-phosphate pathway for the synthesis of isoprenoids, which is based on the spectrophotometrical determination of adenosine 5'-diphosphate using pyruvate kinase and L-lactate dehydrogenase as auxiliary enzymes. This method can be adapted to microtiter plates, can be automated, and because of its simplicity and speed can be useful for the functional characterization of the enzyme and for the screening of inhibitors with potential antibiotic or antimalarial action.
View Article and Find Full Text PDFA new method for the determination of the activity of 4-diphosphocytidyl-2-C-methyl-D-erythritol 4-phosphate synthase, the enzyme catalyzing the third reaction of the 2-C-methyl-D-erythritol 4-phosphate pathway for biosynthesis of isoprenoids, is described. This is an end-point assay based on the transformation of inorganic pyrophosphate, one of the products of the reaction, to phosphate by using inorganic pyrophosphatase as auxiliary enzyme. The phosphate formed is reacted then with the dye malachite green to yield a colored product which can be determined spectrophotometrically.
View Article and Find Full Text PDFBiochem Mol Biol Educ
January 2005
A practical experiment on the PCR is described that has been used over several years as part of an undergraduate biochemistry and molecular biology course for chemistry students. In the first experimental session, students prepare their own DNA samples from epithelial cells of the mouth and use them as templates in the PCR. In the second session, they analyze the amplified DNA by electrophoresis and determine their Rh factor.
View Article and Find Full Text PDFPaclitaxel (Taxol) is a widely used anticancer isoprenoid produced by the secondary metabolism of yew (Taxus sp.) trees. However, only limited amounts of Taxol or related metabolites (taxoids) can be obtained from the currently available sources.
View Article and Find Full Text PDFCarotenoids are plastidic isoprenoid pigments of great biological and biotechnological interest. The precursors for carotenoid production are synthesized through the recently elucidated methylerythritol phosphate (MEP) pathway. Here we have identified a tomato ( Lycopersicon esculentum Mill.
View Article and Find Full Text PDFSplenogonadal fusion is a rare congenital malformation in which the spleen is abnormally connected to the gonads or to the mesonephric derivatives. A few more than 150 cases have been described in the world literature. We report an additional case of splenogonadal fusion.
View Article and Find Full Text PDFPlastid isoprenoids are synthesized via the 2-C-methyl-D-erythritol 4-phosphate pathway. A few years after its discovery, most of the Escherichia coli genes involved in the pathway have been identified, including gcpE. In this work, we have identified an Arabidopsis thaliana protein with homology to the product of this gene.
View Article and Find Full Text PDFBrain Res Mol Brain Res
November 2001
Nitric oxide synthases (NOS) are heme-containing enzymes which catalyse the oxidation of L-arginine to nitric oxide and L-citrulline. Some nitrogenated compounds have been reported to coordinate with the iron atom from the heme group, thus inhibiting NOS. 1,4-Benzodiazepines are nitrogenated compounds which have many physiological effects such as antianxiety, antiepileptic, hypnotic, and muscle relaxation properties.
View Article and Find Full Text PDFThe first step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in plant plastids and most eubacteria is catalyzed by 1-deoxy-D-xylulose 5-phosphate synthase (DXS), a recently described transketolase-like enzyme. To identify key residues for DXS activity, we compared the amino acid sequence of Escherichia coli DXS with that of E. coli and yeast transketolase (TK).
View Article and Find Full Text PDFThe use of 2,3-diaminonaphthalene (DAN) for the fluorimetric determination of nitric oxide synthase (NOS) activity in rat brain extracts has been re-examined. Two types of interference were observed, due either to components of the reaction mixture or to the enzymatic sample itself. One of the substrates (NADPH) and some cofactors (FADH(2), FMNH(2)) required for the enzyme activity interfere in the assay by quenching the fluorescence produced.
View Article and Find Full Text PDFWe report a novel fluorometric end-point assay for the determination of 1-deoxy-d-xylulose 5-phosphate synthase (DXS) activity based on the reaction of 1-deoxy-D-xylulose 5-phosphate (DX5P) with 3,5-diaminobenzoic acid in an acidic medium to form a highly fluorescent quinaldine derivative. The assay was validated in three ways: (a) for a fixed amount of DXS in the reaction mixture the emitted fluorescence increased linearly with the reaction time, (b) for a fixed reaction time fluorescence intensity increased with the concentration of DXS in the reaction mixture, and (c) the increase in fluorescence intensity correlated (r = 0.99; P < 0.
View Article and Find Full Text PDFThis study was performed to delineate the combined effects of a low-fat diet and chronic ethanol ingestion on collagen metabolism in rat pancreas. Rats fed a very low-fat diet (5% of total calories as lipid) for 12 weeks developed malnutrition as judged by weight loss (-33% of the initial body weight) and low serum albumin and amylase levels. The pancreas of malnourished rats showed increased collagenase activity with respect to animals fed a 35% lipid diet (p < 0.
View Article and Find Full Text PDF